Skip to main content

Resources for Assignment of Phosphorylation Sites on Peptides and Proteins

  • Protocol

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1355))

Abstract

Reversible protein phosphorylation is a key regulatory posttranslational modification that plays a significant role in major cellular signaling processes. Phosphorylation events can be systematically identified, quantified, and localized on protein sequence using publicly available bioinformatic tools. Here we present the software tools commonly used by the phosphoproteomics community, discuss their underlying principles of operation, and provide a protocol for large-scale phosphoproteome data analysis using the MaxQuant software suite.

This is a preview of subscription content, log in via an institution.

Buying options

Protocol
USD   49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   139.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Springer Nature is developing a new tool to find and evaluate Protocols. Learn more

References

  1. Roux PP, Thibault P (2013) The coming of age of phosphoproteomics—from large data sets to inference of protein functions. Mol Cell Proteomics 12(12):3453–64

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  2. Mijakovic I, Macek B (2012) Impact of phosphoproteomics on studies of bacterial physiology. FEMS Microbiol Rev 36(4):877–92

    Article  CAS  PubMed  Google Scholar 

  3. Blom N, Gammeltoft S, Brunak S (1999) Sequence and structure-based prediction of eukaryotic protein phosphorylation sites. J Mol Biol 294(5):1351–62

    Article  CAS  PubMed  Google Scholar 

  4. Zhao X et al (2012) Prediction of protein phosphorylation sites by using the composition of k-spaced amino acid pairs. PLoS One 7(10), e46302

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  5. Iakoucheva LM et al (2004) The importance of intrinsic disorder for protein phosphorylation. Nucleic Acids Res 32(3):1037–49

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  6. Ingrell CR et al (2007) NetPhosYeast: prediction of protein phosphorylation sites in yeast. Bioinformatics 23(7):895–7

    Article  CAS  PubMed  Google Scholar 

  7. Miller ML et al (2009) NetPhosBac - a predictor for Ser/Thr phosphorylation sites in bacterial proteins. Proteomics 9(1):116–25

    Article  CAS  PubMed  Google Scholar 

  8. Que S et al (2012) PhosphoRice: a meta-predictor of rice-specific phosphorylation sites. Plant Methods 8:5

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  9. Que S et al (2010) Evaluation of protein phosphorylation site predictors. Protein Pept Lett 17(1):64–9

    Article  CAS  PubMed  Google Scholar 

  10. Eymann C et al (2007) Dynamics of protein phosphorylation on Ser/Thr/Tyr in Bacillus subtilis. Proteomics 7(19):3509–26

    Article  CAS  PubMed  Google Scholar 

  11. Huttlin EL et al (2010) A tissue-specific atlas of mouse protein phosphorylation and expression. Cell 143(7):1174–89

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  12. Olsen JV et al (2010) Quantitative phosphoproteomics reveals widespread full phosphorylation site occupancy during mitosis. Sci Signal 3(104):ra3

    PubMed  Google Scholar 

  13. Steen H, Mann M (2004) The ABC’s (and XYZ’s) of peptide sequencing. Nat Rev Mol Cell Biol 5(9):699–711

    Article  CAS  PubMed  Google Scholar 

  14. Martin DB et al (2005) Investigation of neutral loss during collision-induced dissociation of peptide ions. Anal Chem 77(15):4870–82

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  15. Gonzalez de Peredo A et al (2002) C-mannosylation and o-fucosylation of thrombospondin type 1 repeats. Mol Cell Proteomics 1(1):11–8

    Article  CAS  PubMed  Google Scholar 

  16. Zubarev RA et al (2000) Electron capture dissociation for structural characterization of multiply charged protein cations. Anal Chem 72(3):563–73

    Article  CAS  PubMed  Google Scholar 

  17. Syka JE et al (2004) Peptide and protein sequence analysis by electron transfer dissociation mass spectrometry. Proc Natl Acad Sci U S A 101(26):9528–33

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  18. Beltrao P et al (2013) Evolution and functional cross-talk of protein post-translational modifications. Mol Syst Biol 9:714

    Article  PubMed Central  PubMed  Google Scholar 

  19. Soufi B et al (2012) Proteomics reveals evidence of cross-talk between protein modifications in bacteria: focus on acetylation and phosphorylation. Curr Opin Microbiol 15(3):357–63

    Article  CAS  PubMed  Google Scholar 

  20. Savitski MM, Nielsen ML, Zubarev RA (2006) ModifiComb, a new proteomic tool for mapping substoichiometric post-translational modifications, finding novel types of modifications, and fingerprinting complex protein mixtures. Mol Cell Proteomics 5(5):935–48

    Article  CAS  PubMed  Google Scholar 

  21. Cox J, Mann M (2008) MaxQuant enables high peptide identification rates, individualized p.p.b.-range mass accuracies and proteome-wide protein quantification. Nat Biotechnol 26(12):1367–72

    Article  CAS  PubMed  Google Scholar 

  22. Creasy DM, Cottrell JS (2002) Error tolerant searching of uninterpreted tandem mass spectrometry data. Proteomics 2(10):1426–34

    Article  CAS  PubMed  Google Scholar 

  23. Chalkley RJ, Clauser KR (2012) Modification site localization scoring: strategies and performance. Mol Cell Proteomics 11(5):3–14

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  24. Beausoleil SA et al (2006) A probability-based approach for high-throughput protein phosphorylation analysis and site localization. Nat Biotechnol 24(10):1285–92

    Article  CAS  PubMed  Google Scholar 

  25. Olsen JV, Mann M (2004) Improved peptide identification in proteomics by two consecutive stages of mass spectrometric fragmentation. Proc Natl Acad Sci U S A 101(37):13417–22

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  26. Olsen JV et al (2006) Global, in vivo, and site-specific phosphorylation dynamics in signaling networks. Cell 127(3):635–48

    Article  CAS  PubMed  Google Scholar 

  27. Beer I et al (2004) Improving large-scale proteomics by clustering of mass spectrometry data. Proteomics 4(4):950–60

    Article  CAS  PubMed  Google Scholar 

  28. Marx H et al (2013) A large synthetic peptide and phosphopeptide reference library for mass spectrometry-based proteomics. Nat Biotechnol 31(6):557–64

    Article  CAS  PubMed  Google Scholar 

  29. Eng JK, McCormack AL, Yates JR (1994) An approach to correlate tandem mass spectral data of peptides with amino acid sequences in a protein database. J Am Soc Mass Spectrom 5(11):976–89

    Article  CAS  PubMed  Google Scholar 

  30. Savitski MM et al (2011) Confident phosphorylation site localization using the Mascot Delta Score. Mol Cell Proteomics 10(2):M110 003830

    Article  PubMed Central  PubMed  Google Scholar 

  31. Perkins DN et al (1999) Probability-based protein identification by searching sequence databases using mass spectrometry data. Electrophoresis 20(18):3551–67

    Article  CAS  PubMed  Google Scholar 

  32. Trudgian DC, Singleton R, Cockman ME, Ratcliffe PJ, Kessler BM (2012) ModLS: post-translational modification localization scoring with automatic specificity expansion. J Proteomics Bioinform 5(12):283–289

    Article  Google Scholar 

  33. Taus T et al (2011) Universal and confident phosphorylation site localization using phosphoRS. J Proteome Res 10(12):5354–62

    Article  CAS  PubMed  Google Scholar 

  34. Baker PR, Trinidad JC, Chalkley RJ (2011) Modification site localization scoring integrated into a search engine. Mol Cell Proteomics 10(7):M111 008078

    Article  PubMed Central  PubMed  Google Scholar 

  35. Bailey CM et al (2009) SLoMo: automated site localization of modifications from ETD/ECD mass spectra. J Proteome Res 8(4):1965–71

    Article  CAS  PubMed  Google Scholar 

  36. Wenger CD et al (2011) COMPASS: a suite of pre- and post-search proteomics software tools for OMSSA. Proteomics 11(6):1064–74

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  37. Cox J et al (2009) A practical guide to the MaxQuant computational platform for SILAC-based quantitative proteomics. Nat Protoc 4(5):698–705

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by grants from the Chalmers University of Technology (to IM), the Juniorprofessoren-Programm of the Landesstiftung BW, the SFB766 of the Deutsche Forshungsgemeinschaft, and PRIME-XS consortium (to BM).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Boris Macek or Ivan Mijakovic .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer Science+Business Media New York

About this protocol

Cite this protocol

Ravikumar, V., Macek, B., Mijakovic, I. (2016). Resources for Assignment of Phosphorylation Sites on Peptides and Proteins. In: von Stechow, L. (eds) Phospho-Proteomics. Methods in Molecular Biology, vol 1355. Springer, New York, NY. https://doi.org/10.1007/978-1-4939-3049-4_20

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-3049-4_20

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4939-3048-7

  • Online ISBN: 978-1-4939-3049-4

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics