Skip to main content

High-Throughput Humanized Mouse Models for Evaluation of HIV-1 Therapeutics and Pathogenesis

  • Protocol
HIV Protocols

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1354))

Abstract

Mice cannot be used as a model to evaluate HIV-1 therapeutics because they do not become infected by HIV-1 due to structural differences between several human and mouse proteins required for HIV-1 replication. This has limited their use for in vivo assessment of anti-HIV-1 therapeutics and the mechanism by which cofactors, such as illicit drug use accelerate HIV-1 replication and disease course in substance abusers. Here, we describe the development and application of two in vivo humanized mouse models that are highly sensitive and useful models for the in vivo evaluation of candidate anti-HIV therapeutics. The first model, hu-spl-PBMC-NSG mice, uses NOD-SCID IL2rγ−/− (NSG) mice intrasplenically injected with human peripheral blood mononuclear cells (PBMC) which develop productive splenic HIV-1 infection after intrasplenic inoculation with a replication-competent HIV-1 expressing Renilla reniformis luciferase (HIV-LucR) and enables investigators to use bioluminescence to visualize and quantitate the temporal effects of therapeutics on HIV-1 infection. The second model, hCD4/R5/cT1 mice, consists of transgenic mice carrying human CD4, CCR5 and cyclin T1 genes, which enables murine CD4-expressing cells to support HIV-1 entry, Tat-mediated LTR transcription and consequently develop productive infection. The hCD4/R5/cT1 mice develop disseminated infection of tissues including the spleen, small intestine, lymph nodes and lungs after intravenous injection with HIV-1-LucR. Because these mice can be infected with HIV-LucR expressing transmitted/founder and clade A/E and C Envs, these mouse models can also be used to evaluate the in vivo efficacy of broadly neutralizing antibodies and antibodies induced by candidate HIV-1 vaccines. Furthermore, because hCD4/R5/cT1 mice can be infected by vaginal inoculation with replication-competent HIV-1 expressing NanoLuc (HIV-nLucR)-, this mouse model can be used to evaluate the mechanisms by which substance abuse and other factors enhance mucosal transmission of HIV-1.

Tynisha Thomas and Kieran Seay have equally contributed to this chapter.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Deng H, Liu R, Ellmeier W, Choe S, Unutmaz D, Burkhart M, Di Marzio P, Marmon S, Sutton RE, Hill CM, Davis CB, Peiper SC, Schall TJ, Littman DR, Landau NR (1996) Identification of a major co-receptor for primary isolates of HIV-1. Nature 381:661–666

    Article  CAS  PubMed  Google Scholar 

  2. Imai K, Asamitsu K, Victoriano AF, Cueno ME, Fujinaga K, Okamoto T (2009) Cyclin T1 stabilizes expression levels of HIV-1 Tat in cells. FEBS J 276:7124–7133

    Article  CAS  PubMed  Google Scholar 

  3. Wei P, Garber ME, Fang SM, Fischer WH, Jones KA (1998) A novel CDK9-associated C-type cyclin interacts directly with HIV-1 Tat and mediates its high-affinity, loop-specific binding to TAR RNA. Cell 92:451–462

    Article  CAS  PubMed  Google Scholar 

  4. Wimmer J, Fujinaga K, Taube R, Cujec TP, Zhu Y, Peng J, Price DH, Peterlin BM (1999) Interactions between Tat and TAR and human immunodeficiency virus replication are facilitated by human cyclin T1 but not cyclins T2a or T2b. Virology 255:182–189

    Article  CAS  PubMed  Google Scholar 

  5. McCune JM, Namikawa R, Kaneshima H, Shultz LD, Lieberman M, Weissman IL (1988) The SCID-hu mouse: murine model for the analysis of human hematolymphoid differentiation and function. Science 241:1632–1639

    Article  CAS  PubMed  Google Scholar 

  6. Baenziger S, Tussiwand R, Schlaepfer E, Mazzucchelli L, Heikenwalder M, Kurrer MO, Behnke S, Frey J, Oxenius A, Joller H, Aguzzi A, Manz MG, Speck RF (2006) Disseminated and sustained HIV infection in CD34+ cord blood cell-transplanted Rag2-/-gamma c-/- mice. Proc Natl Acad Sci U S A 103:15951–15956

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Ince WL, Zhang L, Jiang Q, Arrildt K, Su L, Swanstrom R (2010) Evolution of the HIV-1 env gene in the Rag2-/- gammaC-/- humanized mouse model. J Virol 84:2740–2752

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Watanabe S, Ohta S, Yajima M, Terashima K, Ito M, Mugishima H, Fujiwara S, Shimizu K, Honda M, Shimizu N, Yamamoto N (2007) Humanized NOD/SCID/IL2Rgamma(null) mice transplanted with hematopoietic stem cells under nonmyeloablative conditions show prolonged life spans and allow detailed analysis of human immunodeficiency virus type 1 pathogenesis. J Virol 81:13259–13264

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Wege AK, Melkus MW, Denton PW, Estes JD, Garcia JV (2008) Functional and phenotypic characterization of the humanized BLT mouse model. Curr Top Microbiol Immunol 324:149–165

    CAS  PubMed  Google Scholar 

  10. Edmonds TG, Ding H, Yuan X, Wei Q, Smith KS, Conway JA, Wieczorek L, Brown B, Polonis V, West JT, Montefiori DC, Kappes JC, Ochsenbauer C (2010) Replication competent molecular clones of HIV-1 expressing Renilla luciferase facilitate the analysis of antibody inhibition in PBMC. Virology 408:1–13

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Miyawaki A (2007) Bringing bioluminescence into the picture. Nat Methods 4:616–617

    Article  CAS  PubMed  Google Scholar 

  12. Wei X, Decker JM, Liu H, Zhang Z, Arani RB, Kilby JM, Saag MS, Wu X, Shaw GM, Kappes JC (2002) Emergence of resistant human immunodeficiency virus type 1 in patients receiving fusion inhibitor (T-20) monotherapy. Antimicrob Agents Chemother 46:1896–1905

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Sango K, Joseph A, Patel M, Osiecki K, Dutta M, Goldstein H (2010) Highly active antiretroviral therapy potently suppresses HIV infection in humanized Rag2-/-gammac-/- mice. AIDS Res Hum Retrovir 26:735–746

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Seay K, Qi X, Zheng JH, Zhang C, Chen K, Dutta M, Deneroff K, Ochsenbauer C, Kappes JC, Littman DR, Goldstein H (2013) Mice transgenic for CD4-specific human CD4, CCR5 and cyclin T1 expression: a new model for investigating HIV-1 transmission and treatment efficacy. PLoS One 8:e63537

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Ochsenbauer C, Kappes JC (2009) New virologic reagents for neutralizing antibody assays. Curr Opin HIV AIDS 4:418–425

    Article  PubMed  Google Scholar 

  16. Gelderblom HC, Vatakis DN, Burke SA, Lawrie SD, Bristol GC, Levy DN (2008) Viral complementation allows HIV-1 replication without integration. Retrovirology 5:60

    Article  PubMed  PubMed Central  Google Scholar 

  17. Kutsch O, Benveniste EN, Shaw GM, Levy DN (2002) Direct and quantitative single-cell analysis of human immunodeficiency virus type 1 reactivation from latency. J Virol 76:8776–8786

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Levy DN, Aldrovandi GM, Kutsch O, Shaw GM (2004) Dynamics of HIV-1 recombination in its natural target cells. Proc Natl Acad Sci U S A 101:4204–4209

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Ochiel DO, Ochsenbauer C, Kappes JC, Ghosh M, Fahey JV, Wira CR (2010) Uterine epithelial cell regulation of DC-SIGN expression inhibits transmitted/founder HIV-1 trans infection by immature dendritic cells. PLoS One 5:e14306

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Wang X, Ho WZ (2011) Drugs of abuse and HIV infection/replication: implications for mother-fetus transmission. Life Sci 88:972–979

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Toussi SS, Joseph A, Zheng JH, Dutta M, Santambrogio L, Goldstein H (2009) Short communication: methamphetamine treatment increases in vitro and in vivo HIV replication. AIDS Res Hum Retrovir 25:1117–1121

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Suntharasamai P, Martin M, Vanichseni S, van Griensven F, Mock PA, Pitisuttithum P, Tappero JW, Sangkum U, Kitayaporn D, Gurwith M, Choopanya K (2009) Factors associated with incarceration and incident human immunodeficiency virus (HIV) infection among injection drug users participating in an HIV vaccine trial in Bangkok, Thailand, 1999-2003. Addiction 104:235–242

    Article  PubMed  Google Scholar 

  23. Fidel PL Jr, Wolf NA, KuKuruga MA (1996) T lymphocytes in the murine vaginal mucosa are phenotypically distinct from those in the periphery. Infect Immun 64:3793–3799

    CAS  PubMed  PubMed Central  Google Scholar 

  24. Iijima N, Mattei LM, Iwasaki A (2011) Recruited inflammatory monocytes stimulate antiviral Th1 immunity in infected tissue. Proc Natl Acad Sci U S A 108:284–289

    Article  PubMed  PubMed Central  Google Scholar 

  25. Patterson TL, Semple SJ, Staines H, Lozada R, Orozovich P, Bucardo J, Philbin MM, Pu M, Fraga M, Amaro H, Torre Ade L, Martinez G, Magis-Rodriguez C, Strathdee SA (2008) Prevalence and correlates of HIV infection among female sex workers in 2 Mexico-US border cities. J Infect Dis 197:728–732

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Harris Goldstein .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer Science+Business Media New York

About this protocol

Cite this protocol

Thomas, T. et al. (2016). High-Throughput Humanized Mouse Models for Evaluation of HIV-1 Therapeutics and Pathogenesis. In: Prasad, V., Kalpana, G. (eds) HIV Protocols. Methods in Molecular Biology, vol 1354. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-3046-3_15

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-3046-3_15

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-3045-6

  • Online ISBN: 978-1-4939-3046-3

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics