Skip to main content

Recombinant Protein Production in Large-Scale Agitated Bioreactors Using the Baculovirus Expression Vector System

  • Protocol
Baculovirus and Insect Cell Expression Protocols

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1350))

Abstract

The production of recombinant proteins using the baculovirus expression vector system (BEVS) in large-scale agitated bioreactors is discussed in this chapter. Detailed methods of the key stages of a batch process, including host cell growth, virus stock amplification and quantification, bioreactor preparation and operation, the infection process, final harvesting, and primary separation steps for recovery of the product are presented. Furthermore, methods involved with advanced on-line monitoring and bioreactor control, which have a significant impact on the overall process success, are briefly discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Drugmand JC, Schneider YJ, Agathos SN (2012) Insect cells as factories for biomanufacturing. Biotechnol Adv 30:1140–1157

    Article  PubMed  CAS  Google Scholar 

  2. Sokolenko S, George S, Wagner A et al (2012) Co-expression vs. co-infection using baculovirus expression vectors in insect cell culture: Benefits and drawbacks. Biotechnol Adv 30:766–781

    Article  PubMed  CAS  Google Scholar 

  3. Hollister JR, Shaper JH, Jarvis DL (1998) Stable expression of mammalian beta 1,4-galactosyl-transferase extends the N-glycosylation pathway in insect cells. Glycobiology 8:473–480

    Article  PubMed  CAS  Google Scholar 

  4. Schmidt FR (2004) Recombinant expression systems in the pharmaceutical industry. Appl Microbiol Biotechnol 65:363–372

    Article  PubMed  CAS  Google Scholar 

  5. Jarvis DL (1997) Baculovirus expression vectors. In: Miller LK (ed) The Baculoviruses. Plenum Press, New York, pp 389–431

    Chapter  Google Scholar 

  6. Meghrous J, Mahmoud W, Jacob D et al (2009) Development of a simple and high-yielding fed-batch process for the production of influenza vaccines. Vaccine 28:309–316

    Article  PubMed  CAS  Google Scholar 

  7. Wang K, Holtz KM, Anderson K et al (2006) Expression and purification of an influenza hemagglutinin–one step closer to a recombinant protein-based influenza vaccine. Vaccine 24:2176–2185

    Article  PubMed  CAS  Google Scholar 

  8. Meghrous J, Aucoin MG, Jacob D et al (2005) Production of recombinant adeno-associated viral vectors using a baculovirus/insect cell suspension culture system: from shake flasks to a 20-L bioreactor. Biotechnol Prog 21:154–160

    Article  PubMed  CAS  Google Scholar 

  9. Vicente T, Roldão A, Peixoto C et al (2011) Large-scale production and purification of VLP-based vaccines. J Invertebr Pathol 107:S42–S48

    Article  PubMed  CAS  Google Scholar 

  10. Galibert L, Merten O-W (2011) Latest developments in the large-scale production of adeno-associated virus vectors in insect cells toward the treatment of neuromuscular diseases. J Invertebr Pathol 107(Suppl):S80–S93

    Article  PubMed  CAS  Google Scholar 

  11. Kotin RM (2011) Large-scale recombinant adeno-associated virus production. Hum Mol Genet 20(R1):R2–R6

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  12. Zhou M, Shi B, Wang P et al (2011) Large-scale production of functional recombinant CAR in a baculovirus- insect cell system. Acta Virol 55:93–99

    Article  PubMed  CAS  Google Scholar 

  13. Negrete A, Yang LC, Mendez AF et al (2007) Economized large-scale production of high yield of rAAV for gene therapy applications exploiting baculovirus expression system. J Gene Med 9:938–948

    Article  PubMed  CAS  Google Scholar 

  14. Bédard C, Perret S, Kamen AA (1997) Fed-batch culture of Sf-9 cells supports 3 x 107 cells per ml and improves baculovirus-expressed recombinant protein yields. Biotechnol Lett 19:629–632

    Article  Google Scholar 

  15. Elias CB, Zeiser A, Bédard C et al (2000) Enhanced growth of Sf-9 cells to a maximum density of 5.2 x 107 cells per mL and production of ß-galactosidase at high cell density by fed batch culture. Biotechnol Bioeng 68:381–388

    Article  PubMed  CAS  Google Scholar 

  16. Negrete A, Kotin RM (2007) Production of recombinant adeno-associated vectors using two bioreactor configurations at different scales. J Virol Methods 145:155–161

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  17. Ikonomou L, Schneider Y-J, Agathos SN (2003) Insect cell culture for industrial production of recombinant proteins. Appl Microbiol Biotechnol 62:1–20

    Article  PubMed  CAS  Google Scholar 

  18. Kitts PA, Green G (1999) An immunological assay for determination of baculovirus titers in 48 hours. Anal Biochem 268:173–178

    Article  PubMed  CAS  Google Scholar 

  19. Kwon MS, Dojima T, Toriyama M et al (2002) Development of an antibody-based assay for determination of baculovirus titers in 10 hours. Biotechnol Prog 18:647–651

    Article  PubMed  CAS  Google Scholar 

  20. Lo H-R, Chao Y-C (2004) Rapid titer determination of baculovirus by quantitative real time polymerase chain reaction. Biotechnol Prog 20:354–360

    Article  PubMed  CAS  Google Scholar 

  21. George S, Sokolenko S, Aucoin MG (2012) Rapid and cost-effective baculovirus sample preparation method as a viable alternative to conventional preparation for quantitative real-time PCR. J Virol Methods 182:27–36

    Article  PubMed  CAS  Google Scholar 

  22. Pouliquen Y, Kolbinger F, Geisse S et al (2006) Automated baculovirus titration assay based on viable cell growth monitoring using a colorimetric indicator. Biotechniques 40(3):282–292

    Article  PubMed  CAS  Google Scholar 

  23. Mena JA, Ramírez OT, Palomares LA (2003) Titration of non-occluded baculovirus using a cell viability assay. Biotechniques 34:260–264

    PubMed  CAS  Google Scholar 

  24. Janakiraman V, Forrest WF, Chow B et al (2006) A rapid method for estimation of baculovirus titer based on viable cell size. J Virol Methods 132:48–58

    Article  PubMed  CAS  Google Scholar 

  25. Jardin BA, Montes J, Lanthier S et al (2007) High cell density fed batch and perfusion processes for stable non-viral expression of secreted alkaline phosphatase (SEAP) using insect cells: comparison to a batch Sf-9-BEV system. Biotechnol Bioeng 97:332–345

    Article  PubMed  CAS  Google Scholar 

  26. Kamen AA, Bédard C, Tom R et al (1996) On-line monitoring of respiration in recombinant-baculovirus-infected and uninfected insect cell bioreactor cultures. Biotechnol Bioeng 50:36–48

    Article  PubMed  CAS  Google Scholar 

  27. Kamen AA, Tom RL, Caron AW et al (1991) Culture of insect cells in a helical ribbon impeller bioreactor. Biotechnol Bioeng 38:619–628

    Article  PubMed  CAS  Google Scholar 

  28. Sander L, Harrysson A (2007) Using cell size kinetics to determine optimal harvest time for Spodoptera frugiperda and Trichoplusia ni BTI-TN-5B1-4 cells infected with a baculovirus expression vector system expressing enhanced green fluorescent protein. Cytotechnology 54:35–48

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  29. Jorio H, Tran R, Kamen A (2006) Stability of serum-free and purified baculovirus stocks under various storage conditions. Biotechnol Prog 22:319–325

    Article  PubMed  CAS  Google Scholar 

  30. Kioukia N, Nienow AW, Emery AN (1996) Influence of agitation and sparging on the growth rate and infection of insect cells in bioreactors and a comparison with hybridoma culture. Biotechnol Prog 12:779–785

    Article  CAS  Google Scholar 

  31. Cruz PE, Cunha A, Peixoto CC et al (1998) Optimization of the production of virus-like particles in insect cells. Biotechnol Bioeng 60:408–418

    Article  PubMed  CAS  Google Scholar 

  32. Sokolenko S, Cheng Y-L, Aucoin MG (2010) Getting more from cell size distributions: establishing more accurate biovolumes by estimating viable cell populations. Biotechnol Prog 26:1787–1795

    Article  PubMed  CAS  Google Scholar 

  33. O’Reilly DR, Miller LK, Luckow VA (1992) Baculovirus expression vectors: a laboratory manual. W. H. Freeman and Company, New York

    Google Scholar 

  34. Shen CF, Meghrous J, Kamen A (2002) Quantitation of Baculovirus Particles by Flow Cytometry. J Virol Methods 105:321–330

    Article  PubMed  CAS  Google Scholar 

  35. Transfiguracion J, Mena JA, Aucoin MG et al (2011) Development and validation of a HPLC method for the quantification of baculovirus particles. J Chromatogr B 879:61–68

    Article  CAS  Google Scholar 

  36. Mena JA, Aucoin MG, Montes J et al (2010) Improving adeno-associated vector yield in high density insect cell cultures. J Gene Med 12:157–167

    Article  PubMed  CAS  Google Scholar 

  37. Bedard C, Kamen A, Tom R et al (1994) Maximization of recombinant protein yield in the insect cell/baculovirus system by one-time addition of nutrients to high-density batch cultures. Cytotechnology 15:129–138

    Article  PubMed  CAS  Google Scholar 

  38. Bernal V, Carinhas N, Yokomizo AY et al (2009) Cell density effect in the baculovirus-insect cells system: a quantitative analysis of energetic metabolism. Biotechnol Bioeng 104:162–180

    Article  PubMed  CAS  Google Scholar 

  39. Licari P, Bailey JE (1992) Modeling the population dynamics of baculovirus-infected insect cells: optimizing infection strategies for enhanced recombinant protein yields. Biotechnol Bioeng 39:432–441

    Article  PubMed  CAS  Google Scholar 

  40. Benslimane C, Elias CB, Hawari J et al (2005) Insights into the central metabolism of Spodoptera frugiperda (Sf-9) and Trichoplusia ni BTI-Tn-5B1-4 (Tn-5) insect cells by radiolabeling studies. Biotechnol Prog 21:78–86

    Article  PubMed  CAS  Google Scholar 

  41. Zeiser A, Bédard C, Voyer R et al (1999) On-line monitoring of the progress of infection in Sf-9 insect cell cultures using relative permittivity measurements. Biotechnol Bioeng 63:122–126

    Article  PubMed  CAS  Google Scholar 

  42. Zeiser A, Elias CB, Voyer R et al (2000) On-line monitoring physiological parameters of insect cell cultures during growth and infection process. Biotechnol Prog 16:803–808

    Article  PubMed  CAS  Google Scholar 

  43. Ansorge S, Esteban G, Schmid G (2009) Multifrequency permittivity measurements enable on-line monitoring of changes in intracellular conductivity due to nutrient limitations during batch cultivations of CHO cells. Biotechnol Prog 26:272–283

    Google Scholar 

  44. Ansorge S, Esteban G, Schmid G (2007) On-line monitoring of infected Sf-9 insect cell cultures by scanning permittivity measurements and comparison with off-line biovolume measurements. Cytotechnology 55:115–124

    Article  PubMed  PubMed Central  Google Scholar 

  45. Teixeira AP, Oliveira R, Alves PM et al (2009) Advances in on-line monitoring and control of mammalian cell cultures: supporting the PAT initiative. Biotechnol Adv 27:726–732

    Article  PubMed  CAS  Google Scholar 

  46. Hisiger S, Jolicoeur M (2005) A multiwavelength fluorescence probe: is one probe capable for on-line monitoring of recombinant protein production and biomass activity? J Biotechnol 117:325–336

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

The authors would like to thank Emma Petiot, Robert Voyer, and Danielle Jacobs for their helpful advice and input throughout the writing of this chapter.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marc G. Aucoin .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Thompson, C.M., Montes, J., Aucoin, M.G., Kamen, A.A. (2016). Recombinant Protein Production in Large-Scale Agitated Bioreactors Using the Baculovirus Expression Vector System. In: Murhammer, D. (eds) Baculovirus and Insect Cell Expression Protocols. Methods in Molecular Biology, vol 1350. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-3043-2_11

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-3043-2_11

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-3042-5

  • Online ISBN: 978-1-4939-3043-2

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics