Skip to main content

Spot Synthesis: An Optimized Microarray to Detect IgE Epitopes

  • Protocol
Peptide Microarrays

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1352))

Abstract

Peptide microarrays have become increasingly more affordable in recent years with the SPOT technique being one of the most frequently used methods for synthesis and screening of peptides in arrays. Here, a protocol is presented for the identification of the amino acid sites involved in the conversion of human IgG to IgE response during the passive administration of therapeutic, anti-snake venom sera. Similarly, the minimal region of both the IgG and IgE binding epitopes, important for its interaction with ligand, were identified. As the ratio of concentrations for IgG to IgE in human serum is 1:10,000, also presented is a reproductive protocol of chemiluminescence-scanning for the detection of both immunoglobulins.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Winkler DF, Hilpert K (2010) Synthesis of antimicrobial peptides using the SPOT technique. Methods Mol Biol 618:111–124

    Article  CAS  PubMed  Google Scholar 

  2. Hilpert K, Behlke J, Scholz C et al (1999) Interaction of the capsid protein p24 (HIV-1) with sequence-derived peptides: influence on p24 dimerization. Virology 254:6–10

    Article  CAS  PubMed  Google Scholar 

  3. Reineke U, Sabat R, Kramer A et al (1995) Mapping of protein-protein contact sites using cellulose bound peptide scans. Mol Divers 1:141–148

    Article  Google Scholar 

  4. Weiergräber O, Schneider-Mergener J, Grötzinger J et al (1996) Use of immobilized synthetic peptides for the identification of contact sites between human interleukin-6 and its receptor. FEBS Lett 379:122–126

    Article  PubMed  Google Scholar 

  5. Brix J, Rudiger S, Bukau B et al (1999) The mitochondrial import receptors Tom20, Tom22 and Tom70: distribution of binding sequences in a presequence-carrying preprotein and a non-cleavable preprotein. J Biol Chem 274:16522–16530

    Article  CAS  PubMed  Google Scholar 

  6. Schneider-Mergener J, Kramer A, Reineke U (1996) Peptide libraries bound to continuous cellulose membranes: tools to study molecular recognition. In: Cortese R (ed) Combinatorial libraries. W. De. Gruyter, Berlin, pp 53–68

    Google Scholar 

  7. Sachs EF, Nadler AU (2011) Triostin A derived hybrid for simultaneous DNA binding and metal coordination. Amino Acids 41:449–456

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Volkmer R, Tapia V, Landgraf C (2012) Synthetic peptide arrays for investigating protein interaction domains. FEBS Lett 586:2780–2786

    Article  CAS  PubMed  Google Scholar 

  9. Rudigger S, Germeroth L, Schneider- Mergener J et al (1997) Substrate specificity of the DnaK chaperone determined by screening of cellulose-bound peptide libraries. EMBO J 16:1501–1507

    Article  Google Scholar 

  10. Winkler DF, Campbell WD (2008) The spot technique: synthesis and screening of peptide macroarrays on cellulose membranes. Methods Mol Biol 494:47–70

    Article  CAS  PubMed  Google Scholar 

  11. Reineke U, Sabat R, Volk D et al (1998) Mapping of the interleukin-10/interleukin-10 receptor combining site. Protein Sci 7:951–960

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Bottino CG, Gomes LP, Zauza PL et al (2012) Chagas disease-specific antigens: characterization of CRA/FRA epitopes by synthetic peptide mapping and evaluation on ELISA-peptide assay. BMC Infect Dis 13:568–578

    Article  Google Scholar 

  13. De-Simone SG, Napoleão-Pego P, Teixeira-Pinto LAL et al (2013) Linear B-cell epitopes in BthTX-I, BthTX-II and BthA-I, phospholipase A2’s from Bothrops jararacussu snake venom, recognized by therapeutically neutralizing commercial horse antivenom. Toxicon 72:90–101

    Article  CAS  PubMed  Google Scholar 

  14. Cretich M, Damin F, Chiari M (2014) Protein microarray technology: how far of is routine diagnostics? Analyst 139:528–542

    Article  CAS  PubMed  Google Scholar 

  15. Uttamchandani M, Wang J, Yao SQ (2006) Protein and small molecule microarrays: powerful tools for high-throughput proteomics. Mol Biosyst 2:58–68

    Article  CAS  PubMed  Google Scholar 

  16. Santos-Pinto JRA, Santos LD, Arcuri HA et al (2014) B-cell linear epitopes mapping of antigen-5 allergen from Polybia paulista wasp venom. J Allergy Clin Immunol. doi:10.1016/j.jaci.2014.07.006

    PubMed  Google Scholar 

  17. Silva FR, Napoleão-Pego P, De-Simone SG (2014) Identification of linear B epitopes of pertactin of Bordetella pertussis induced by immunization with whole and acellular vaccine. Vaccine 32:6251–6258

    Article  PubMed  Google Scholar 

  18. Geysen HM, Meloen RH, Barteling SJ (1984) Use of peptide synthesis to probe viral antigens for epitopes to a resolution of a single amino acid. Proc Natl Acad Sci U S A 81:3998–4002

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Wang CY, Walfield AM, Fang X et al (2003) Synthetic IgE peptide vaccine for immunotherapy of allergy. Vaccine 21:1580–1590

    Article  CAS  PubMed  Google Scholar 

  20. Barteling SJ, Woortmeye R (1984) Formaldehyde inactivation of foot-and-mouth disease virus. Conditions for the preparation of safe vaccine. Arch Virol 80:103–117

    Article  CAS  PubMed  Google Scholar 

  21. Kramer A, Schuster A, Reineke U et al (1994) Combinatorial cellulose-bound peptide libraries: screening tool for the identification of peptides that bind ligands with predefined specificity. Methods 6:388–395

    Article  CAS  Google Scholar 

  22. Houghten RA (1985) General method for the rapid solid-phase synthesis of large numbers of peptides: specificity of antigen-antibody interaction at the level of individual amino acids. Proc Natl Acad Sci U S A 82:5131–5135

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Scott JK, Smith GP (1990) Searching for peptide ligands with an epitope library. Science 249:386–390

    Article  CAS  PubMed  Google Scholar 

  24. Furka A, Sebestyen F, Asgedom M et al (1991) General method for rapid synthesis of multicomponent peptide mixture. Int J Pept Protein Res 37:487–493

    Article  CAS  PubMed  Google Scholar 

  25. Lam KS, Salmon SE, Hersh EM et al (1991) A new type of synthetic peptide library for identifying ligand-binding activity. Nature 354:82–84

    Article  CAS  PubMed  Google Scholar 

  26. Dooley CT, Houghten RA (1993) The use of positional scanning synthetic peptide combinatorial libraries for the rapid determination of opioid receptor ligands. Life Sci 52:1509–1517

    Article  CAS  PubMed  Google Scholar 

  27. Fodor SP, Read JL, Pirrung MC et al (1991) Light-directed, spatially addressable parallel chemical synthesis. Science 251:767–773

    Article  CAS  PubMed  Google Scholar 

  28. Kramer A, Reineke U, Dong L et al (1999) Spot synthesis: observations and optimizations. J Pept Res 54:319–327

    Article  CAS  PubMed  Google Scholar 

  29. Weisser AA, Or-Cuil M, Tapia V et al (2005) SPOT synthesis: reliability of array-based measurement of peptide binding affinity. Anal Biochem 342:300–311

    Article  Google Scholar 

  30. Frank R (2002) The SPOT-synthesis technique. Synthetic peptide arrays on membrane supports-principles and applications. J Immunol Methods 267:13–26

    Article  CAS  PubMed  Google Scholar 

  31. Frank R (1992) Spot-synthesis: an easy technique for the positionally addressable, parallel chemical synthesis on a membrane support. Tetrahedron 48:9217–9232

    Article  CAS  Google Scholar 

  32. Frank R, Overwin H (1996) SPOT synthesis. Epitope analysis with arrays of synthetic peptides prepared on cellulose membranes. Methods Mol Biol 66:149–169

    CAS  PubMed  Google Scholar 

  33. Kramer A, Schneider-Mergener J (1998) Synthesis and screening of peptide libraries on continuous cellulose membrane supports. Methods Mol Biol 87:25–39

    CAS  PubMed  Google Scholar 

  34. Molina F, Laune D, Gougat C et al (1996) Improved performances of spot multiple peptide synthesis. Pept Res 9:151–155

    CAS  PubMed  Google Scholar 

  35. Terness P, Kohl I, Hubener G et al (1995) The natural human IgG anti-F(ab′)2 antibody recognizes a conformational IgG1 hinge epitope. J Immunol 154:6446–6452

    CAS  PubMed  Google Scholar 

  36. Fernandes I, Lima EX, Takehara HA et al (2000) Horse IgG isotypes and cross-neutralization of two snake antivenoms produced in Brazil and Costa Rica. Toxicon 38:633–644

    Article  CAS  PubMed  Google Scholar 

  37. Sheoran AS, Timoney JF, Holmes MA et al (2000) Immunoglobulin isotypes in sera and nasal mucosal secretions and their neonatal transfer and distribution in horses. Am J Vet Res 61:1099–2005

    Article  CAS  PubMed  Google Scholar 

  38. Hilpert K, Winkler DFH, Hancock REW (2007) Cellulose-bound peptide arrays: preparation and applications. Biotechnol Genet Eng Rev 24:31–106

    Article  CAS  Google Scholar 

  39. Hilpert K, Winkler DF, Hancock RE (2007) Peptide arrays on cellulose support: SPOT synthesis, a time and cost efficient method for synthesis of large numbers of peptides in a parallel and addressable fashion. Nat Protoc 2:1333–1349

    Article  CAS  PubMed  Google Scholar 

  40. Ledin A, Arnemo JM, Liberg O et al (2008) High plasma IgE levels within the Scandinavian wolf population, and its implications for mammalian IgE homeostasis. Mol Immunol 45:1976–1980

    Article  CAS  PubMed  Google Scholar 

  41. De-Simone SG, Napoleão-Pêgo P, Teixeira-Pinto LAL et al (2014) IgE and IgG epitope mapping by microarray peptide-immunoassay reveals the importance and diversity of the immune response to the IgG3 equine immunoglobulin. Toxicon 78:83–93

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgement

This work received financial assistance from the Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq), Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES) and Fundação Carlos Chagas Filho de Amparo a Pesquisa do Estado do Rio de Janeiro (FAPERJ).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Salvatore G. De-Simone .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer Science+Business Media New York

About this protocol

Cite this protocol

De-Simone, S.G., Napoleão-Pêgo, P., De-Simone, T.S. (2016). Spot Synthesis: An Optimized Microarray to Detect IgE Epitopes. In: Cretich, M., Chiari, M. (eds) Peptide Microarrays. Methods in Molecular Biology, vol 1352. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-3037-1_20

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-3037-1_20

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-3036-4

  • Online ISBN: 978-1-4939-3037-1

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics