Skip to main content

Synthetic Peptide-Based ELISA and ELISpot Assay for Identifying Autoantibody Epitopes

  • Protocol
Peptide Microarrays

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1352))

Abstract

Enzyme-linked immunosorbent assay (ELISA) is an invaluable diagnostic tool to detect serum autoantibody binding to target antigen. To map the autoantigenic epitope(s), overlapping synthetic peptides covering the total sequence of a protein antigen are used. A large set of peptides synthesized on the crown of pins can be tested by Multipin ELISA for fast screening. Next, to validate the results, the candidate epitope peptides are resynthesized by solid-phase synthesis, coupled to ELISA plate directly, or in a biotinylated form, bound to neutravidin-coated surface and the binding of autoantibodies from patients’ sera is tested by indirect ELISA. Further, selected epitope peptides can be applied in enzyme-linked immunospot assay to distinguish individual, citrullinated peptide-specific autoreactive B cells in a pre-stimulated culture of patients’ lymphocytes.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Abdel-Nasser AM, Rasker JJ, Valkenburg HA (1997) Epidemiological and clinical aspects relating to the variability of rheumatoid arthritis. Semin Arthritis Rheum 27(2):123–140

    Article  CAS  PubMed  Google Scholar 

  2. Hill J (2003) Cutting edge: the conversion of arginine to citrulline allows for a high-affinity peptide interaction with the rheumatoid arthritis-associated HLA-DRB1*0401 MHC class II molecule. J Immunol 171(2):538–541

    Article  CAS  PubMed  Google Scholar 

  3. Cantaert T et al (2008) B lymphocyte autoimmunity in rheumatoid synovitis is independent of ectopic lymphoid neogenesis. J Immunol 181(1):785–794

    Article  CAS  PubMed  Google Scholar 

  4. Yeo L et al (2011) Cytokine mRNA profiling identifies B cells as a major source of RANKL in rheumatoid arthritis. Ann Rheum Dis 70(11):2022–2028

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Koo J et al (2013) Increased lymphocyte infiltration in rheumatoid arthritis is correlated with an increase in LTi-like cells in synovial fluid. Immune Netw 13(6):240–248

    Article  PubMed  PubMed Central  Google Scholar 

  6. Giles JT et al (2014) Association of cross-reactive antibodies targeting peptidyl-arginine deiminase 3 and 4 with rheumatoid arthritis-associated interstitial lung disease. PLoS One 9(6):e98794

    Article  PubMed  PubMed Central  Google Scholar 

  7. Trouw LA, Mahler M (2012) Closing the serological gap: promising novel biomarkers for the early diagnosis of rheumatoid arthritis. Autoimmun Rev 12(2):318–322

    Article  CAS  PubMed  Google Scholar 

  8. Auger I et al (2012) Autoantibodies to PAD4 and BRAF in rheumatoid arthritis. Autoimmun Rev 11(11):801–803

    Article  CAS  PubMed  Google Scholar 

  9. Sherer Y et al (2004) Autoantibody explosion in systemic lupus erythematosus: more than 100 different antibodies found in SLE patients. Semin Arthritis Rheum 34(2):501–537

    Article  CAS  PubMed  Google Scholar 

  10. Klareskog L et al (2008) Immunity to citrullinated proteins in rheumatoid arthritis. Annu Rev Immunol 26:651–675

    Article  CAS  PubMed  Google Scholar 

  11. Suzuki K et al (2003) High diagnostic performance of ELISA detection of antibodies to citrullinated antigens in rheumatoid arthritis. Scand J Rheumatol 32(4):197–204

    Article  CAS  PubMed  Google Scholar 

  12. van Venrooij WJ, Hazes JM, Visser H (2002) Anticitrullinated protein/peptide antibody and its role in the diagnosis and prognosis of early rheumatoid arthritis. Neth J Med 60(10):383–388

    PubMed  Google Scholar 

  13. Simon M (1993) The cytokeratin filament-aggregating protein filaggrin is the target of the so-called “antikeratin antibodies”, autoantibodies specific for rheumatoid arthritis. J Clin Invest 92(3):1387–1393

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Schellekens GA et al (1998) Citrulline is an essential constituent of antigenic determinants recognized by rheumatoid arthritis-specific autoantibodies. J Clin Invest 101(1):273–281

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Girbal-Neuhauser E et al (1999) The epitopes targeted by the rheumatoid arthritis-associated antifilaggrin autoantibodies are posttranslationally generated on various sites of (pro)filaggrin by deimination of arginine residues. J Immunol 162(1):585–594

    CAS  PubMed  Google Scholar 

  16. Masson-Bessiere C et al (2001) The major synovial targets of the rheumatoid arthritis-specific antifilaggrin autoantibodies are deiminated forms of the alpha- and beta-chains of fibrin. J Immunol 166(6):4177–4184

    Article  CAS  PubMed  Google Scholar 

  17. Asaga H, Yamada M, Senshu T (1998) Selective deimination of vimentin in calcium ionophore-induced apoptosis of mouse peritoneal macrophages. Biochem Biophys Res Commun 243(3):641–646

    Article  CAS  PubMed  Google Scholar 

  18. Van Steendam K, Tilleman K, Deforce D (2011) The relevance of citrullinated vimentin in the production of antibodies against citrullinated proteins and the pathogenesis of rheumatoid arthritis. Rheumatology (Oxford) 50(5):830–837

    Article  Google Scholar 

  19. Lundberg K et al (2008) Antibodies to citrullinated alpha-enolase peptide 1 are specific for rheumatoid arthritis and cross-react with bacterial enolase. Arthritis Rheum 58(10):3009–3019

    Article  CAS  PubMed  Google Scholar 

  20. Masson-Bessiere C et al (2000) In the rheumatoid pannus, anti-filaggrin autoantibodies are produced by local plasma cells and constitute a higher proportion of IgG than in synovial fluid and serum. Clin Exp Immunol 119(3):544–552

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Schellekens GA et al (2000) The diagnostic properties of rheumatoid arthritis antibodies recognizing a cyclic citrullinated peptide. Arthritis Rheum 43(1):155–163

    Article  CAS  PubMed  Google Scholar 

  22. Aletaha D et al (2010) 2010 rheumatoid arthritis classification criteria: an American College of Rheumatology/European League Against Rheumatism collaborative initiative. Ann Rheum Dis 69(9):1580–1588

    Article  PubMed  Google Scholar 

  23. Nishimura K et al (2007) Meta-analysis: diagnostic accuracy of anti-cyclic citrullinated peptide antibody and rheumatoid factor for rheumatoid arthritis. Ann Intern Med 146(11):797–808

    Article  PubMed  Google Scholar 

  24. Bang H et al (2007) Mutation and citrullination modifies vimentin to a novel autoantigen for rheumatoid arthritis. Arthritis Rheum 56(8):2503–2511

    Article  CAS  PubMed  Google Scholar 

  25. Coenen D et al (2007) Technical and diagnostic performance of 6 assays for the measurement of citrullinated protein/peptide antibodies in the diagnosis of rheumatoid arthritis. Clin Chem 53(3):498–504

    Article  CAS  PubMed  Google Scholar 

  26. Swart A et al (2012) Third generation anti-citrullinated peptide antibody assay is a sensitive marker in rheumatoid factor negative rheumatoid arthritis. Clin Chim Acta 414:266–272

    Article  CAS  PubMed  Google Scholar 

  27. Szarka E et al (2014) Recognition of new citrulline-containing peptide epitopes by autoantibodies produced in vivo and in vitro by B cells of rheumatoid arthritis patients. Immunology 141(2):181–191

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Geysen HM et al (1987) Strategies for epitope analysis using peptide synthesis. J Immunol Methods 102(2):259–274

    Article  CAS  PubMed  Google Scholar 

  29. Babos F et al (2013) Role of N- or C-terminal biotinylation in autoantibody recognition of citrullin containing filaggrin epitope peptides in rheumatoid arthritis. Bioconjug Chem 24(5):817–827

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gabriella Sarmay .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer Science+Business Media New York

About this protocol

Cite this protocol

Pozsgay, J. et al. (2016). Synthetic Peptide-Based ELISA and ELISpot Assay for Identifying Autoantibody Epitopes. In: Cretich, M., Chiari, M. (eds) Peptide Microarrays. Methods in Molecular Biology, vol 1352. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-3037-1_17

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-3037-1_17

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-3036-4

  • Online ISBN: 978-1-4939-3037-1

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics