Skip to main content

Maternal Obesity in Pregnancy: Consequences for Brain Function in the Offspring

  • Protocol
Prenatal and Postnatal Determinants of Development

Part of the book series: Neuromethods ((NM,volume 109))

Abstract

It is perhaps not surprising that an inhospitable intrauterine environment can result in neurodevelopmental disorders, given the enormous changes in brain development that occur during gestation. Here we discuss: (1) Obesity is a state of low-grade inflammation and is thus a candidate for having an unfavorable impact on brain function in the offspring. (2) Maternal obesity has recently been associated with offspring attention deficit hyperactivity disorder and autism spectrum disorder. A recent study found differences in amniotic fluid mRNA for 20 genes in fetuses of obese versus lean women, and several of these genes impact on brain sculpting. (3) The balance between excitable and inhibitory neural function can be disturbed as a consequence of maternal obesity and can lead to hyperexcitability-linked cognitive decline later in life. (4) While most studies of brain development and function have focused on neurons, inflammation and oxidative stress have major effects on microglia and astrocytes, key cells in the sculpting of synapses, neural plasticity, and the formation of neural networks. (5) Animal models are, of necessity, widely used and the temporal trajectory of neurodevelopment to accommodate the requirements of the different species has recently been modeled. While detailed studies are essential for understanding mechanism, it is critical to test the outcomes of manipulating the system on behavior. In this regard considerable care is required to ensure that the most appropriate behavioral test and animal model are used. Thus, there is considerable scope for consolidating our understanding of the effects of maternal obesity on brain function in the offspring.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. McIntyre HD et al (2012) Overweight and obesity in Australian mothers: epidemic or endemic? Med J Aust 196:184–188

    Article  PubMed  Google Scholar 

  2. Gunstad J et al (2008) Relationship between body mass index and brain volume in healthy adults. Int J Neurosci 118:1582–1593

    Article  PubMed  Google Scholar 

  3. Cohen RA (2010) Obesity-associated cognitive decline: excess weight affects more than the waistline. Neuroepidemiology 34:230–231

    Article  PubMed  Google Scholar 

  4. AP Association (2000) Diagnostic and statistical manual of mental disorders. APA, Washington, DC, Revised 4th edition

    Google Scholar 

  5. Krakowiak P et al (2012) Maternal metabolic conditions and risk for autism and other neurodevelopmental disorders. Pediatrics 129:e1121–e1128

    Article  PubMed Central  PubMed  Google Scholar 

  6. Sullivan EL et al (2014) Maternal high fat diet consumption during the perinatal period programs offspring behavior. Physiol Behav 123:236–242

    Article  CAS  PubMed  Google Scholar 

  7. Edlow AG et al (2014) Maternal obesity affects fetal neurodevelopmental and metabolic gene expression: a pilot study. PLoS One 9:e88661

    Article  PubMed Central  PubMed  Google Scholar 

  8. Maximo JO et al (2014) The implications of brain connectivity in the neuropsychology of autism. Neuropsychol Rev 24:16

    Article  PubMed Central  PubMed  Google Scholar 

  9. Bouret SG et al (2004) Trophic action of leptin on hypothalamic neurons that regulate feeding. Science 304:108–110

    Article  CAS  PubMed  Google Scholar 

  10. Kirk SL et al (2009) Maternal obesity induced by diet in rats permanently influences central processes regulating food intake in offspring. PLoS One 4:e5870

    Article  PubMed Central  PubMed  Google Scholar 

  11. Kar S et al (1993) Quantitative autoradiographic localization of [125I]insulin-like growth factor I, [125I]insulin-like growth factor II, and [125I]insulin receptor binding sites in developing and adult rat brain. J Comp Neurol 333:375–397

    Article  CAS  PubMed  Google Scholar 

  12. Blazquez E et al (2014) Insulin in the brain: its pathophysiological implications for States related with central insulin resistance, type 2 diabetes and Alzheimer’s disease. Front Endocrinol 5:161

    Article  Google Scholar 

  13. Heidenreich KA et al (1989) Insulin receptors mediate growth effects in cultured fetal neurons. II. Activation of a protein kinase that phosphorylates ribosomal protein S6. Endocrinology 125:1458–1463

    Article  CAS  PubMed  Google Scholar 

  14. Inoue Y et al (2010) Transitional change in rat fetal cell proliferation in response to ghrelin and des-acyl ghrelin during the last stage of pregnancy. Biochem Biophys Res Commun 393:455–460

    Article  CAS  PubMed  Google Scholar 

  15. Coupe B et al (2012) Loss of autophagy in pro-opiomelanocortin neurons perturbs axon growth and causes metabolic dysregulation. Cell Metab 15:247–255

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  16. Bouret S et al (2015) Gene-environment interactions controlling energy and glucose homeostasis and the developmental origins of obesity. Physiol Rev 95:47–82

    Article  PubMed  Google Scholar 

  17. Bhagat R et al (2015) Exposure to a high fat diet during the perinatal period alters vagal motoneurone excitability, even in the absence of obesity. J Physiol 593:285–303

    Article  CAS  PubMed  Google Scholar 

  18. Zis AP et al (1975) Neuroleptic-induced deficits in food and water regulation: similarities to the lateral hypothalamic syndrome. Psychopharmacologia 43:63–68

    Article  CAS  PubMed  Google Scholar 

  19. Uranga RM et al (2010) Intersection between metabolic dysfunction, high fat diet consumption, and brain aging. J Neurochem 114:344–361

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  20. Convit A et al (2003) Reduced glucose tolerance is associated with poor memory performance and hippocampal atrophy among normal elderly. Proc Natl Acad Sci U S A 100:2019–2022

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  21. Wilson IA et al (2006) Neurocognitive aging: prior memories hinder new hippocampal encoding. Trends Neurosci 29:662–670

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  22. Lee EB et al (2014) The neuropathology of obesity: insights from human disease. Acta Neuropathol 127:3–28

    Article  CAS  PubMed  Google Scholar 

  23. Daniels ZSB et al (2009) Obesity is a common comorbidity for pediatric patients with untreated, newly diagnosed epilepsy. Neurology 73:658–664

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  24. Gao S et al (2008) The incidence rate of seizures in relation to BMI in UK adults. Obesity 16:2126–2132

    Article  PubMed  Google Scholar 

  25. Hesdorffer DC et al (2005) Socioeconomic status is a risk factor for epilepsy in Icelandic adults but not in children. Epilepsia 46:1297–1303

    Article  PubMed  Google Scholar 

  26. Bannerman DM et al (2014) Hippocampal synaptic plasticity, spatial memory and anxiety. Nat Rev Neurosci 15:181–192

    Article  CAS  PubMed  Google Scholar 

  27. Stoop R et al (2000) Functional connections and epileptic spread between hippocampus, entorhinal cortex and amygdala in a modified horizontal slice preparation of the rat brain. Eur J Neurosci 12:3651–3663

    Article  CAS  PubMed  Google Scholar 

  28. Bakker A et al (2012) Reduction of hippocampal hyperactivity improves cognition in amnestic mild cognitive impairment. Neuron 74:467–474

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  29. Haberman RP et al (2011) Prominent hippocampal CA3 gene expression profile in neurocognitive aging. Neurobiol Aging 32:1678–1692

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  30. Koh MT et al (2010) Treatment strategies targeting excess hippocampal activity benefit aged rats with cognitive impairment. Neuropsychopharmacology 35:1016–1025

    Article  PubMed Central  PubMed  Google Scholar 

  31. Putcha D et al (2011) Hippocampal hyperactivation associated with cortical thinning in Alzheimer’s Disease signature regions in non-demented elderly adults. J Neurosci 31:17680–17688

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  32. Sanchez PE et al (2012) Levetiracetam suppresses neuronal network dysfunction and reverses synaptic and cognitive deficits in an Alzheimer’s disease model. Proc Natl Acad Sci U S A 109:E2895–E2903

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  33. Vossel KA et al (2013) Seizures and epileptiform activity in the early stages of Alzheimer disease. JAMA Neurol 70:1158–1166

    Article  PubMed Central  PubMed  Google Scholar 

  34. Koh MT et al (2013) Selective GABAA a5 positive allosteric modulators improve cognitive function in aged rats with memory impairment. Neuropharmacology 64:145–152

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  35. Verret L et al (2012) Inhibitory interneuron deficit links altered network activity and cognitive dysfunction in Alzheimer model. Cell 149:708–721

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  36. Luhmann HJ et al (1992) Hypoxia-induced functional alterations in adult rat neocortex. J Neurophysiol 67:798–811

    CAS  PubMed  Google Scholar 

  37. Perez Velazquez JL et al (2007) Typical versus atypical absence seizures: network mechanisms of the spread of paroxysms. Epilepsia 48:1585–1593

    Article  Google Scholar 

  38. Hsu F-C et al (2003) Repeated neonatal handling with maternal separation permanently alters hippocampal GABAA receptors and behavioral stress responses. Proc Natl Acad Sci U S A 100:12213–12218

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  39. Spiegel AM et al (2013) Hilar interneuron vulnerability distinguishes aged rats with memory impairment. J Comp Neurol 521:3508–3523

    Article  CAS  PubMed  Google Scholar 

  40. Spanswick D et al (1997) Leptin inhibits hypothalamic neurons by activation of ATP-sensitive potassium channels. Nature 390:521–525

    Article  CAS  PubMed  Google Scholar 

  41. Spanswick D et al (2000) Insulin activates ATP-sensitive K+ channels in hypothalamic neurons of lean, but not obese rats. Nat Neurosci 3:757–758

    Article  CAS  PubMed  Google Scholar 

  42. Briggs DI et al (2014) Evidence that diet-induced hyperleptinemia, but not hypothalamic gliosis, causes ghrelin resistance in NPY/AgRP neurons of male mice. Endocrinology 155:2411–2422

    Article  PubMed  Google Scholar 

  43. Walker FR et al (2013) Acute and chronic stress-induced disturbances of microglial plasticity, phenotype and function. Curr Drug Targets 14:1262–1276

    Article  CAS  PubMed  Google Scholar 

  44. Parkhurst CN et al (2013) Microglia promote learning-dependent synapse formation through Brain-Derived Neurotrophic Factor. Cell 155:1596–1609

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  45. Wake H et al (2012) Physiological function of microglia. Neuron Glia Biol 7:1–3

    Article  Google Scholar 

  46. Zheng K et al (2011) TrkB signaling in parvalbumin-positive interneurons is critical for gamma-band network synchronization in hippocampus. Proc Natl Acad Sci U S A 108:17201–17206

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  47. Devinsky O et al (2013) Glia and epilepsy: excitability and inflammation. Trends Neurosci 36:174–184

    Article  CAS  PubMed  Google Scholar 

  48. Tornatore L et al (2012) The nuclear factor kappa B signaling pathway: integrating metabolism with inflammation. Trends Cell Biol 22:557–566

    Article  CAS  PubMed  Google Scholar 

  49. Green HF et al (2012) Unlocking mechanisms in interleukin-1b-induced changes in hippocampal neurogenesis -a role for GSK-3b and TLX. Transl Psychiatr 2:e194

    Article  CAS  Google Scholar 

  50. Ganz PA et al (2012) Does tumor necrosis factor-alpha (TNF-alpha) play a role in post-chemotherapy cerebral dysfunction? Brain Behav Immun 30(Suppl):S99–S108

    PubMed Central  PubMed  Google Scholar 

  51. Anderson G et al (2013) Schizophrenia is primed for an increased expression of depression through activation of immuno-inflammatory, oxidative and nitrosative stress, and tryptophan catabolite pathways. Prog Neuropsychopharmacol Biol Psychiatry 42:101

    Article  CAS  PubMed  Google Scholar 

  52. Beilharz JE et al (2014) Short exposure to a diet rich in both fat and sugar or sugar alone impairs place, but not object recognition memory in rats. Brain Behav Immun 37:134–141

    Article  CAS  PubMed  Google Scholar 

  53. Pistell PJ et al (2010) Cognitive impairment following high fat diet consumption is associated with brain inflammation. J Neuroimmunol 219:25–32

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  54. Pepping JK et al (2013) NOX2 deficiency attenuates markers of adiposopathy and brain injury induced by high-fat diet. Am J Physiol Endocrinol Metab 304:E392–E404

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  55. Ortinski PI et al (2010) Selective induction of astrocytic gliosis generates deficits in neuronal inhibition. Nat Neurosci 13:584–U93

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  56. Elovitz MA et al (2006) Elucidating the early signal transduction pathways leading to fetal brain injury in preterm birth. Pediatr Res 59:50–55

    Article  PubMed  Google Scholar 

  57. Tang SC et al (2007) Pivotal role for neuronal Toll-like receptors in ischemic brain injury and functional deficits. Proc Natl Acad Sci U S A 104:13798–13803

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  58. Kushnir R et al (2011) Peripheral inflammation upregulates P2X receptor expression in satellite glial cells of mouse trigeminal ganglia: a calcium imaging study. Neuropharmacology 61:739–746

    Article  CAS  PubMed  Google Scholar 

  59. Block ML et al (2007) Microglia-mediated neurotoxicity: uncovering the molecular mechanisms. Nat Rev Neurosci 8:57–69

    Article  CAS  PubMed  Google Scholar 

  60. Ma D et al (2013) The neurotoxic effect of astrocytes activated with toll-like receptor ligands. J Neuroimmunol 254:10–18

    Article  CAS  PubMed  Google Scholar 

  61. Steele ML et al (2012) Reactive astrocytes give neurons less support: implications for Alzheimer’s disease. Neurobiol Aging 33(423):e1–e13

    PubMed  Google Scholar 

  62. Coulter DA et al (2012) Astrocytic regulation of glutamate homeostasis in epilepsy. Glia 60:1215–1226

    Article  PubMed Central  PubMed  Google Scholar 

  63. Wetherington J et al (2008) Astrocytes in the epileptic brain. Neuron 58:168–178

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  64. Khurana DS et al (2013) Mitochondrial dysfunction in epilepsy. Semin Pediatr Neurol 20:176–187

    Article  PubMed  Google Scholar 

  65. Wang X et al (2014) Oxidative stress and mitochondrial dysfunction in Alzheimer’s disease. Biochim Biophys Acta 1842:1240

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  66. Accardi MV et al (2014) Mitochondrial reactive oxygen species regulate the strength of inhibitory GABA-mediated synaptic transmission. Nat Commun 5(3168):1–12

    Google Scholar 

  67. Finsterer J et al (2012) Mitochondrial toxicity of antiepileptic drugs and their tolerability in mitochondrial disorders. Expert Opin Drug Metab Toxicol 8:71–79

    Article  CAS  PubMed  Google Scholar 

  68. Biala YN et al (2011) Prenatal stress diminishes gender differences in behavior and in expression of hippocampal synaptic genes and proteins in rats. Hippocampus 21:1114–1125

    Article  CAS  PubMed  Google Scholar 

  69. Liu M et al (2007) Role of P450 aromatase in sex-specific astrocytic cell death. J Cereb Blood Flow Metab 27:135–141

    Article  CAS  PubMed  Google Scholar 

  70. McCarthy MM (2013) Sexual differentiation of the brain in man and animals. Am J Med Genet C Semin Med Genet 163:3–15

    Article  Google Scholar 

  71. Konkle AT et al (2011) Developmental time course of estradiol, testosterone, and dihydrotestosterone levels in discrete regions of male and female rat brain. Endocrinology 152:223–235

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  72. Amateau SK et al (2002) A novel mechanism of dendritic spine plasticity involving estradiol induction of prostaglandin-E2. J Neurosci 22:8586–8596

    CAS  PubMed  Google Scholar 

  73. Tan XJ et al (2012) Reduction of dendritic spines and elevation of GABAergic signaling in the brains of mice treated with an estrogen receptor beta ligand. Proc Natl Acad Sci U S A 109:1708–1712

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  74. Oomen CA et al (2009) Opposite effects of early maternal deprivation on neurogenesis in male versus female rats. PLoS One 4:e3675

    Article  PubMed Central  PubMed  Google Scholar 

  75. Hayward C et al (2002) Puberty and the emergence of gender differences in psychopathology. J Adolesc Health 30:49–58

    Article  PubMed  Google Scholar 

  76. Zhang Z et al (2013) Norepinephrine drives persistent activity in prefrontal cortex via synergistic alpha1 and alpha2 adrenoceptors. PLoS One 8:e66122

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  77. Baram TZ et al (1991) Corticotropin-releasing hormone is a rapid and potent convulsant in the infant rat. Brain Res Dev Brain Res 61:97–101

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  78. Cowley TR et al (2012) Rosiglitazone attenuates the age-related changes in astrocytosis and the deficit in LTP. Neurobiol Aging 33:162–175

    Article  CAS  PubMed  Google Scholar 

  79. Clark SM et al (2014) Immune status influences fear and anxiety responses in mice after acute stress exposure. Brain Behav Immun 38:192

    Article  CAS  PubMed  Google Scholar 

  80. Shiraev T et al (2009) Differential effects of restricted versus unlimited high-fat feeding in rats on fat mass, plasma hormones and brain appetite regulators. J Neuroendocrinol 21:602–609

    Article  CAS  PubMed  Google Scholar 

  81. Poon LL et al (2000) Presence of fetal RNA in maternal plasma. Clin Chem 46:1832–1834

    CAS  PubMed  Google Scholar 

  82. Bilimoria PM et al (2014) Microglia function during brain development: new insights from animal models. Brain Res 1617:7–17

    Article  PubMed  Google Scholar 

  83. Ginhoux F et al (2010) Fate mapping analysis reveals that adult microglia derive from primitive macrophages. Science 330:841–845

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  84. Monier A et al (2007) Entry and distribution of microglial cells in human embryonic and fetal cerebral cortex. J Neuropathol Exp Neurol 66:372–382

    Article  PubMed  Google Scholar 

  85. Verney C et al (2010) Early microglial colonization of the human forebrain and possible involvement in periventricular white-matter injury of preterm infants. J Anat 217:436–448

    Article  PubMed Central  PubMed  Google Scholar 

  86. Morgan JT et al (2010) Microglial activation and increased microglial density observed in the dorsolateral prefrontal cortex in autism. Biol Psychiatry 68:368–376

    Article  PubMed  Google Scholar 

  87. Tasker JG et al (2012) Glial regulation of neuronal function: from synapse to systems physiology. J Neuroendocrinol 24:566–576

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  88. Rusakov DA (2012) Astroglial glutamate transporters trigger glutaminergic gliotransmission. J Physiol 590:2187–2188

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  89. Rusakov DA (2012) Depletion of extracellular Ca(2)(+) prompts astroglia to moderate synaptic network activity. Science signaling 5:pe4

    Article  PubMed Central  PubMed  Google Scholar 

  90. Hamilton NB et al (2010) Do astrocytes really exocytose neurotransmitters? Nat Rev Neurosci 11:227–238

    Article  CAS  PubMed  Google Scholar 

  91. Smith K (2010) Neuroscience: settling the great glia debate. Nature 468:160–162

    Article  CAS  PubMed  Google Scholar 

  92. Khakh BS et al (2015) Astrocyte calcium signaling: from observations to functions and the challenges therein. Cold Spring Harb Perspect Biol 7(4):a020404

    Article  PubMed  Google Scholar 

  93. Alleva E et al (2000) Important hints in behavioural teratology of rodents. Curr Pharm Des 6:99–126

    Article  CAS  PubMed  Google Scholar 

  94. Ohl F et al (2003) Behavioural screening in mutagenised mice—in search for novel animal models of psychiatric disorders. Eur J Pharmacol 480:219–228

    Article  CAS  PubMed  Google Scholar 

  95. Haensel JX et al (2015) A systematic review of physiological methods in rodent pharmacological MRI studies. Psychopharmacology (Berl) 232:489–499

    Article  CAS  Google Scholar 

  96. Reed MD et al (2013) Behavioral effects of acclimatization to restraint protocol used for awake animal imaging. J Neurosci Methods 217:63–66

    Article  PubMed  Google Scholar 

  97. Scott BB et al (2013) Cellular resolution functional imaging in behaving rats using voluntary head restraint. Neuron 80:371–384

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  98. Meredith RM (2014) Sensitive and critical periods during neurotypical and aberrant neurodevelopment: a framework for neurodevelopmental disorders. Neurosci Biobehav Rev 50:180–188

    Article  PubMed  Google Scholar 

  99. Dobbing J et al (1979) Comparative aspects of the brain growth spurt. Early Hum Dev 3:79–83

    Article  CAS  PubMed  Google Scholar 

  100. Workman AD et al (2013) Modeling transformations of neurodevelopmental sequences across mammalian species. J Neurosci 33:7368–7383

    Article  PubMed Central  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Helena C. Parkington .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer Science+Business Media New York

About this protocol

Cite this protocol

Coleman, H.A., Parkington, H.C. (2016). Maternal Obesity in Pregnancy: Consequences for Brain Function in the Offspring. In: Walker, D. (eds) Prenatal and Postnatal Determinants of Development. Neuromethods, vol 109. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-3014-2_10

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-3014-2_10

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-3013-5

  • Online ISBN: 978-1-4939-3014-2

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics