Skip to main content

Physiology of Extracorporeal Life Support (ECLS)

  • Chapter
Extracorporeal Life Support for Adults

Abstract

Extracorporeal life support (ECLS) describes several advancing technologies of broadening scope that support severe cardiorespiratory dysfunction in critically ill patients. ECLS provides alternatives when mechanical ventilation does not suffice to deliver adequate oxygenation or carbon dioxide clearance. Veno-venous extracorporeal membrane oxygenation (VV-ECMO) supports gas exchange in venous blood returning to the right heart. ECLS can also be configured to provide mechanical support of the failing circulation; veno-arterial extracorporeal membrane oxygenation (VA-ECMO) augments systemic blood flow utilising the extracorporeal blood pump. As patients can be critically dependent on these supports, a thorough understanding of the systems and their interaction with the body is essential in applying ECLS and in preventing or ameliorating problems that can arise.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Occasionally the term αPCO2 is used in this equation to describe the total concentration of CO2 and carbonic acid; however, the concentration of the latter is orders of magnitude smaller than the former. Thus [CO2] can be calculated accurately from Henry’s Law without alteration of the solubility constant (Eq. 1.5).

  2. 2.

    Being electrical neutrality, the units are available charge (milli-equivalents per litre mEq·L−1); hence, the concentration of double valent ions is multiplied by 2 to account for their charge density. The multiplier of 1.8 for inorganic phosphate and 0.28 for albumin are approximations as the charge density for these weak acids varies slightly with pH. [z+] and [x] refer to other unmeasured exogenous or endogenous cations and anions.

References

  1. Kim G-B, Kim S-J, Kim M-H, Hong C-U, Kang H-S. Development of a hollow fiber membrane module for using implantable artificial lung. J Membr Sci. 2009;326(1):130–6.

    Article  CAS  Google Scholar 

  2. Scheepers A, Joost H-G, Schürmann A. The glucose transporter families SGLT and GLUT: molecular basis of normal and aberrant function. JPEN J Parenter Enteral Nutr. 2004;28(5):364–71.

    Article  CAS  PubMed  Google Scholar 

  3. Stryer L. Biochemistry [Internet]. W.H. Freeman; 1995. Available from: http://books.google.com.au/books?id=5PdpAAAAMAAJ

  4. Beals M, Gross L, Harrell S. Efficiency of ATP production 4th Edition. Metabolism for energy and the respiratory quotient. 1999 [cited 2012 Aug 15]. Available from: http://www.tiem.utk.edu/~gross/bioed/webmodules/respiratoryquotient.html

  5. Elia M, Livesey G. Theory and validity of indirect calorimetry during net lipid synthesis. Am J Clin Nutr. 1988;47(4):591–607.

    CAS  PubMed  Google Scholar 

  6. Wolfe RR, Allsop JR, Burke JF. Glucose metabolism in man: responses to intravenous glucose infusion. Metabolism. 1979;28(3):210–20.

    Article  CAS  PubMed  Google Scholar 

  7. Hellerstein MK et al. De novo lipogenesis in humans: metabolic and regulatory aspects. Eur J Clin Nutr. 1999;53:53–65.

    Article  Google Scholar 

  8. Mulquiney PJ, Kuchel PW. Control analysis of 2,3-bisphosphoglycerate metabolism [Internet]. Biochem J. 1999 [cited 2012 Oct 10];342:597–604. Available from: http://www.biochemj.org/bj/342/bj3420597.htm

  9. Mulquiney PJ, Bubb WA, Kuchel PW. In situ kinetic characterization of 2,3-bisphosphoglycerate synthase/phosphatase [Internet]. Biochem J. 1999 [cited 2012 Oct 10];342:567–80. Available from: http://www.biochemj.org/bj/342/bj3420567.htm

  10. Lawson DS, Holt D. Insensible water loss from the Jostra Quadrox D oxygenator: an in vitro study. Perfusion. 2007;22(6):407–10.

    Article  CAS  PubMed  Google Scholar 

  11. Drummond M, Braile DM, Lima-Oliveira AP, Camim AS, Oyama RS, Sandoval GH. Technological evolution of membrane oxygenators. Braz J Cardiovasc Surg. 2005;20(4):432–7.

    Article  Google Scholar 

  12. Peter S. Strong ions plus carbon dioxide. In: Kellum JA, Elbers PW, editors. Stewart’s textbook of acid-base. 2nd ed. London, UK: Lulu Enterprises; 2009. p. 111–32.

    Google Scholar 

  13. Anaesthsia Correspondence Web Site [Internet]. [cited 2012 Sep 17]. Available from: http://www.anaesthesiacorrespondence.net/Correspond3.asp?articleid=3598&archive=1

  14. Lumb AB. Nunn’s applied respiratory physiology. 5th ed. Oxford: Butterworth-Heinemann; 2000.

    Google Scholar 

  15. Sargent, John A, Gotch, Frank. Principles and biophysics of dialysis. Replacement of Renal function by Dialysis. Dordrecht: Springer; 1996. p. 34–145.

    Google Scholar 

  16. Cussler EL. Diffusion: mass transfer in fluid systems. Cambridge: Cambridge University Press; 1997.

    Google Scholar 

  17. Grathwohl P. Diffusion in natural porous media: contaminant transport, sorption/desorption and dissolution kinetics. Boston, MA: Kluwer Academic Publishers; 1998.

    Book  Google Scholar 

  18. Katoh S, Yoshida F. Rates of absorption of oxygen into blood under turbulent conditions. Chem Eng J. 1972;3:276–85.

    Article  CAS  Google Scholar 

  19. Matsuda N, Sakai K. Blood flow and oxygen transfer rate of an outside blood flow membrane oxygenator. J Membr Sci. 2000;170:153–8.

    Article  CAS  Google Scholar 

  20. Weibel ER. The pathway for oxygen: structure and function in the mammalian respiratory system. Cambridge, MA: Harvard University Press; 1984.

    Google Scholar 

  21. Epstein FH, Hsia CCW. Respiratory function of hemoglobin. N Engl J Med. 1998;338(4):239–48.

    Article  Google Scholar 

  22. Heaton A, Keegan T, Holme S. In vivo regeneration of red cell 2,3-diphosphoglycerate following transfusion of DPG-depleted AS-1, AS-3 and CPDA-1 red cells. Br J Haematol. 1989;71(1):131–6.

    Article  CAS  PubMed  Google Scholar 

  23. Thomas LJ. Algorithms for selected blood acid-base and blood gas calculations. J Appl Physiol. 1972;33(1):154–8.

    PubMed  Google Scholar 

  24. Kelman GR. Digital computer subroutine for the conversion of oxygen tension into saturation. J Appl Physiol. 1966;21(4):1375–6.

    CAS  PubMed  Google Scholar 

  25. Nickalls R. Inverse solutions of the Severinghaus and Thomas equations which allow PO2 to be derived directly from So2 [Internet]. [cited 2012 Sep 3]. Available from: www.nickalls.org/dick/papers/anes/severinghaus.pdf

  26. Arthurs GJ, Sudhakar M. Carbon dioxide transport. Contin Educ Anaesth Crit Care Pain. 2005;5(6):207–10.

    Article  Google Scholar 

  27. Fencl V, Jabor A, Kazda A, Figge J. Diagnosis of metabolic acid-base disturbances in critically ill patients. Am J Respir Crit Care Med. 2000;162(6):2246–51.

    Article  CAS  PubMed  Google Scholar 

  28. Gutknecht J, Bisson MA, Tosteson FC. Diffusion of carbon dioxide through lipid bilayer membranes. Effects of carbonic anhydrase, bicarbonate, and unstirred layers. J Gen Physiol. 1977;69(6):779.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  29. Centor R. Serum total carbon dioxide—clinical methods—NCBI Bookshelf. In: Walker H, Hall W, Hurst J, editors. Clinical methods: the history, physical, and laboratory examinations [Internet]. Butterworths; 1990 [cited 2012 Sep 22]. Available from: http://www.ncbi.nlm.nih.gov/books/NBK308/

  30. Mochizuki M. The CO2 dissociation curve at steady state in vivo. Yamagata Med J. 2004;22(1):25–8.

    Google Scholar 

  31. Beilin LJ, Knight GJ, Munro-Faure AD, Anderson J. The sodium, potassium, and water contents of red blood cells of healthy human adults. J Clin Invest. 1966;45(11):1817.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  32. Mochizuki M. Analysis of bicarbonate concentration in human blood plasma at steady state in vivo. Yamagata Med J. 2004;22(1):09–24.

    Google Scholar 

  33. Mochizuki M, Takiwaki H, Kagawa T, Tazawa H. Derivation of theoretical equations of the CO2 dissociation curve and the carbamate fraction in the Haldane effect. Jpn J Physiol. 1983;33(4):579–99.

    Article  CAS  PubMed  Google Scholar 

  34. Tazawa H, Mochizuki M, Tamura M, Kagawa T. Quantitative analyses of the CO2 dissociation curve of oxygenated blood and the Haldane effect in human blood. Jpn J Physiol. 1983;33(4):601–18.

    Article  CAS  PubMed  Google Scholar 

  35. Baker A, Richardson D, Craig G. Extracorporeal carbon dioxide removal (ECCO2R) in respiratory failure: an overview, and where next? Journal of the Intensive Care Society 2012;13(3):232–237

    Google Scholar 

  36. Ventilation with lower tidal volumes as compared with traditional tidal volumes for acute lung injury and the acute respiratory distress syndrome. N Engl J Med. 2000;342(18):1301–8.

    Google Scholar 

  37. Jung J, Lyczkowski RW, Panchal CB, Hassanein A. Multiphase hemodynamic simulation of pulsatile flow in a coronary artery. J Biomech. 2006;39(11):2064–73.

    Article  PubMed  Google Scholar 

  38. Papaioannou TG, Stefanadis C. Vascular wall shear stress: basic principles and methods. Hellenic J Cardiol. 2005;46(1):9–15.

    PubMed  Google Scholar 

  39. Lipowsky H. Microvascular rheology and hemodynamics. Microcirculation. 2005;12(1):5–15.

    Article  PubMed  Google Scholar 

  40. Lipowsky HH, Kovalcheck S, Zweifach BW. The distribution of blood rheological parameters in the microvasculature of cat mesentery. Circ Res. 1978;43(5):738–49.

    Article  CAS  PubMed  Google Scholar 

  41. Ercan M, Koksal C. The relationship between shear rate and vessel diameter. Anesth Analg. 2003;96(1):307–8.

    Article  CAS  PubMed  Google Scholar 

  42. Bahrami M. Introduction to fluid mechanics: ENSC283 2011 [Internet]. Simon Fraser University: Lecture Notes for Introduction to Fluid Mechanics: ENSC283. 2011 [cited 2012 Oct 13]. Available from: http://www.sfu.ca/~mbahrami/ENSC%20283/Notes/

  43. Bloomfield LA. How everything works: making physics out of the ordinary. Hoboken, NJ: Wiley; 2007.

    Google Scholar 

  44. Salamonsen RF, Lim E, Gaddum N, AlOmari A-HH, Gregory SD, Stevens M, et al. Theoretical foundations of a starling-like controller for rotary blood pumps. Artif Organs. 2012;36(9):787–96.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Matthew J. Brain MBBS (Hons), FRACP, FCICM, DDU .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer Science+Business Media New York

About this chapter

Cite this chapter

Brain, M.J., Butt, W.W., MacLaren, G. (2016). Physiology of Extracorporeal Life Support (ECLS). In: Schmidt, G. (eds) Extracorporeal Life Support for Adults. Respiratory Medicine, vol 16. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-3005-0_1

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-3005-0_1

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-3004-3

  • Online ISBN: 978-1-4939-3005-0

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics