Skip to main content

Part of the book series: Methods in Pharmacology and Toxicology ((MIPT))

Abstract

The pharmaceutical industry is predominantly dominated by the handling of particulate matter in the form of solids and emulsions. With the enforcement of the Quality by Design (QbD) initiative by the Food and Drug Association (FDA), a process systems engineering based case toward particulate process design is advantageous. This suggests the need for mechanistic modeling approaches that can be used for an accurate representation of the process dynamics. The inherent discrete nature of population balance models (PBM) makes it an appropriate framework for modeling particulate processes. With the representation of the particulate processes used for pharmaceutical product manufacturing using various modeling frameworks, advancements can be made to improved control and optimization of the process. This chapter provides a detailed review on the applicability and significance of PBMs in drug product manufacturing and is aimed to provide greater insight into the field of process systems engineering.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Abbas A, Romagnoli JA (2007) Multiscale modeling, simulation and validation of batch cooling crystallization. Sep Purif Technol 53(2):153–163

    CAS  Google Scholar 

  2. Barrasso D, Ramachandran R (2012) A comparison of model order reduction techniques for a four-dimensional population balance model describing multi-component wet granulation processes. Chem Eng Sci 80:380–392

    CAS  Google Scholar 

  3. Barrasso D, Oka S, Muliadi A, Litster JD, Wassgren C, Ramachandran R (2013) Population balance model validation and prediction of cqas for continuous milling processes: toward QbD in pharmaceutical drug product manufacturing. J Pharm Innov 8:147–162

    Google Scholar 

  4. Barrasso D, Walia S, Ramachandran R (2013) Multi-component population balance modeling of continuous granulation processes: a parametric study and comparison with experimental trends. Powder Technol 241:85–97

    CAS  Google Scholar 

  5. Besenhard MO, Chaudhury A, Vetter T, Ramachandran R, Khinast J (2015) Evaluation of parameter estimation methods for crystallization processes modeled via population balance equations. Chem Eng Res Des 94: 275–289

    CAS  Google Scholar 

  6. Bilgili E, Scarlett B (2005) Population balance modeling of non-linear effects in milling processes. Powder Technol 153(1):59–71

    CAS  Google Scholar 

  7. Borissova A (2009) General systems modeling of multi-phase batch crystallization from solution. Chem Eng Process Process Intensif 48(1):268–278

    CAS  Google Scholar 

  8. Boukouvala F, Ramachandran R, Muzzio FJ, Ierapetritou M (2011) Computer-aided design of an integrated pharmaceutical process. Comput Aided Chem Eng 6:100–105

    Google Scholar 

  9. Boukouvala F, Niotis V, Ramachandran R, Muzzio FJ, Ierapetritou MG (2012) An integrated approach for dynamic flowsheet modeling and sensitivity analysis of a continuous tablet manufacturing process. Comput Chem Eng 42:30–47

    CAS  Google Scholar 

  10. Boukouvala F, Chaudhury A, Sen M, Zhou R, Mioduszewski L, Ierapetritou M, Ramachandran R (2013) Computer-aided flowsheet simulation of a pharmaceutical tablet manufacturing process incorporating wet granulation. J Pharm Innov 8(1):11–27

    Google Scholar 

  11. Braatz RD (2002) Advanced control of crystallization processes. Annu Rev Control 26(1):87–99

    Google Scholar 

  12. Cameron I, Wang F, Immanuel C, Stepanek F (2005) Process systems modelling and applications in granulation: a review. Chem Eng Sci 60(14):3723–3750

    CAS  Google Scholar 

  13. Capece M, Bilgili E, Dave R (2011) Identification of the breakage rate and distribution parameters in a non-linear population balance model for batch milling. Powder Technol 208(1):195–204

    CAS  Google Scholar 

  14. Chakraborty J, Kumar S (2007) A new framework for solution of multidimensional population balance equations. Chem Eng Sci 62(15):4112–4125

    CAS  Google Scholar 

  15. Chaudhury A, Ramachandran R (2013) Integrated population balance model development and validation of a granulation process. Part Sci Technol 31(4):407–418

    CAS  Google Scholar 

  16. Chaudhury A, Tabora JE, Murugesan S, Remy B, Ramachandran R (2011) Application of a 2-d population balance model to a pharmaceutical crystallization process. In: Proceedings of 2011 AIChe annual meeting, Minneapolis, October 2011

    Google Scholar 

  17. Chaudhury A, Kapadia A, Prakash AV, Barrasso D, Ramachandran R (2013) An extended cell-average technique for a multi-dimensional population balance of granulation describing aggregation and breakage. Adv Powder Technol 24(6):962–971

    Google Scholar 

  18. Chaudhury A, Niziolek A, Ramachandran R (2013) Multi-dimensional mechanistic modeling of fluid bed granulation processes: an integrated approach. Adv Powder Technol 24(1):113–131

    Google Scholar 

  19. Chaudhury A, Oseledets IV, Ramachandran R (2013) A computationally efficient technique for the solution of multi-dimensional population balance models of granulation via tensor decomposition. Comput Chem Eng 61:234–244

    Google Scholar 

  20. Chaudhury A, Barrasso D, Pandey P, Wu H, Ramachandran R (2014) Population balance model development, validation, and prediction of cqas of a high-shear wet granulation process: towards qbd in drug product pharmaceutical manufacturing. J Pharm Innov 9(1):53–64

    Google Scholar 

  21. Chaudhury A, Wu H, Khan M, Ramachandran R (2014) A mechanistic population balance model for granulation processes: effect of process and formulation parameters. Chem Eng Sci 107:76–92

    CAS  Google Scholar 

  22. Costa CBB, Maciel MRW, Filho RM (2007) Considerations on the crystallization modeling: population balance solution. Comput Chem Eng 31(3):206–218

    CAS  Google Scholar 

  23. Datta A, Rajamani RK (2002) A direct approach of modeling batch grinding in ball mills using population balance principles and impact energy distribution. Int J Miner Process 64(4):181–200

    CAS  Google Scholar 

  24. Denis C, Hemati M, Chulia D, Lanne JY, Buisson B, Daste G, Elbaz F (2003) A model of surface renewal with application to the coating of pharmaceutical tablets in rotary drums. Powder Technol 130(1–3):174–180

    CAS  Google Scholar 

  25. Diemer RB Jr, Spahr DE, Olson JH, Magan RV (2005) Interpretation of size reduction data via moment models. Powder Technol 156(2–3):83–94

    CAS  Google Scholar 

  26. Ennis BJ, Tardos G, Pfeffer R (1991) A microlevel-based characterization of granulation phenomena. Powder Technol 65(1–3):257–272

    CAS  Google Scholar 

  27. Fazli NA, Samad A, Singh R, Sin G, Gernaey KV, Gani R (2011) A generic multi-dimensional model-based system for batch cooling crystallization processes. Comput Chem Eng 35(5):828–843

    Google Scholar 

  28. Févotte F, Févotte G (2010) A method of characteristics for solving population balance equations (pbe) describing the adsorption of impurities during crystallization processes. Chem Eng Sci 65(10):3191–3198

    Google Scholar 

  29. Fichthom KA, Weinberg WH (1991) Theoretical foundations of dynamical monte carlo simulations. J Chem Phys 95(2):1090–1096

    Google Scholar 

  30. Freireich B, Li J, Litster J, Wassgren C (2011) Incorporating particle flow information from discrete element simulations in population balance models of mixer-coaters. Chem Eng Sci 66(16):3592–3604

    CAS  Google Scholar 

  31. Gernaey KV, Gani R (2010) A model-based systems approach to pharmaceutical product-process design and analysis. Chem Eng Sci 65:5757–5769

    CAS  Google Scholar 

  32. Gerogiorgis DI, Barton PI (2009) Steady-state optimization of a continuous pharmaceutical process. In: 10th International symposium on process systems engineering: Part A, computer aided chemical engineering, vol 27, pp 927–932

    Google Scholar 

  33. Goldhirsch I (2008) Introduction to granular temperature. Powder Technol 182:130–136

    CAS  Google Scholar 

  34. Gunawan R, Fusman I, Braatz RD (2004) High resolution algorithms for multidimensional population balance equations. AIChE J 50(11):2738–2749

    CAS  Google Scholar 

  35. Hounslow MJ, Ryall RL, Marshall VR (1988) A discretized population balance for nucleation, growth, and aggregation. AIChE J 34(11):1821–1832

    CAS  Google Scholar 

  36. Immanuel CD, Doyle III FJ (2003) Computationally efficient solution of population balance models incorporating nucleation, growth and coagulation: application to emulsion polymerization. Chem Eng Sci 58(16):3681–3698

    CAS  Google Scholar 

  37. Immanuel CD, Doyle III FJ (2005) Solution technique for a multi-dimensional population balance model describing granulation processes. Powder Technol 156(2–3):213–225

    CAS  Google Scholar 

  38. Iveson SM (2002) Limitations of one-dimensional population balance models of wet granulation processes. Powder Technol 124:219–229

    CAS  Google Scholar 

  39. Klatt KU, Marquardt W (2009) Perspectives of process systems engineering-personal views from academia and industry. Comput Chem Eng 33:536–550

    CAS  Google Scholar 

  40. Kumar J, Peglow M, Warnecke G, Heinrich S, Mörl L (2006) Improved accuracy and convergence of discretized population balance for aggregation: the cell average technique. Chem Eng Sci 61(10):3327–3342

    CAS  Google Scholar 

  41. Kumar S, Ramkrishna D (1996) On the solution of population balance equations by discretization–i. A fixed pivot technique. Chem Eng Sci 51(8):1311–1332

    CAS  Google Scholar 

  42. Kumar R, Wassgren C (2013) Angular circulation speed of tablets in a vibratory tablet coating pan. AAPS PharmSciTech 14(1):339–351

    PubMed  PubMed Central  Google Scholar 

  43. Laloue N, Couenne F, Gorrec YL, Kohl M, Tanguy D, Tayakout-Fayolle M (2007) Dynamic modeling of a batch crystallization process: a stochastic approach for agglomeration and attrition process. Chem Eng Sci 62(23):6604–6614

    CAS  Google Scholar 

  44. Lee K (1983) Change of particle size distribution during brownian coagulation. J Colloid Interface Sci 92(2):315–325

    CAS  Google Scholar 

  45. Leuenberger H (2001) New trends in the production of pharmaceutical granules: batch versus continuous processing. Eur J Pharm Biopharm 52:289–298

    CAS  PubMed  Google Scholar 

  46. Li J, Freireich B, Wassgren C, Litster JD (2012) A general compartment-based population balance model for particle coating and layered granulation. AIChE J 58(5):1397–1408

    CAS  Google Scholar 

  47. Lindenberg C, Krättli M, Cornel J, Mazzotti M (2009) Design and optimization of a combined cooling/antisolvent crystallization process. Cryst Growth Des 9(2):1124–1136

    CAS  Google Scholar 

  48. Litster J, Ennis B (2004) The science and engineering of granulation processes. Kluwer Academic Publishers, Dordrecht

    Google Scholar 

  49. Litster JD, Smit DJ, Hounslow MJ (1995) Adjustable discretized population balance for growth and aggregation. AIChE J 41(3):591–603

    CAS  Google Scholar 

  50. Liu LX, Litster JD (2002) Population balance modelling of granulation with a physically based coalescence kernel. Chem Eng Sci 57(12):2183–2191

    CAS  Google Scholar 

  51. Liu LX, Litster JD, Iveson SM, Ennis BJ (2000) Coalescence of deformable granules in wet granulation processes. AIChE J 46(3):529–539

    CAS  Google Scholar 

  52. Liu L, Robinson D, Addai-Mensah J (2012) Population balance based modelling of nickel laterite agglomeration behaviour. Powder Technol 223:92–97

    CAS  Google Scholar 

  53. Long C, Gantt J, Gatzke E (2005) Batch granulation control using a simplified population balance and nonlinear model predictive control. In: Proceedings of the 2005 American control conference, 2005, vol 2, pp 949–954

    Google Scholar 

  54. Ma DL, Tafti DK, Braatz RD (2002) Optimal control and simulation of multidimensional crystallization processes. Comput Chem Eng 26(7–8):1103–1116

    CAS  Google Scholar 

  55. Marchal P, David R, Klein J, Villermaux J (1988) Crystallization and precipitation engineering—i. An efficient method for solving population balance in crystallization with agglomeration. Chem Eng Sci 43(1):59–67

    CAS  Google Scholar 

  56. Marchisio DL, Soos M, Sefcik J, Morbidelli M, Barresi AA, Baldi G (2006) Effect of fluid dynamics on particle size distribution in particulate processes. Chem Eng Technol 29(2):191–199

    CAS  Google Scholar 

  57. Maronga S, Wnukowski P (1997) Establishing temperature and humidity profiles in fluidized bed particulate coating. Powder Technol 94(2):181–185

    CAS  Google Scholar 

  58. Maronga S, Wnukowski P (1997) Modelling of the three-domain fluidized-bed particulate coating process. Chem Eng Sci 52(17):2915–2925

    CAS  Google Scholar 

  59. Marshall CL Jr, Rajniak P, Matsoukas T (2011) Numerical simulations of two-component granulation: comparison of three methods. Chem Eng Res Des 89(5):545–552

    CAS  Google Scholar 

  60. Miki H, Terashima T, Asakuma Y, Maeda K, Fukui K (2005) Inclusion of mother liquor inside kdp crystals in a continuous msmpr crystallizer. Sep Purif Technol 43(1):71–76

    CAS  Google Scholar 

  61. Nakamura H, Abe E, Yamada N (1998) Coating mass distributions of seed particles in a tumbling fluidized bed coater part ii. A monte carlo simulation of particle coating. Powder Technol 99(2):140–146

    CAS  Google Scholar 

  62. Oseledets IV, Tyrtyshnikov EE (2009) Breaking the curse of dimensionality, or how to use SVD in many dimensions. SIAM J Sci Comput 31(5):3744–3759

    Google Scholar 

  63. Pandey P, Tao J, Chaudhury A, Ramachandran R, Gao JZ, Bindra DS (2013) A combined experimental and modeling approach to study the effects of high-shear wet granulation process parameters on granule characteristics. Pharm Dev Technol 18(1):210–224

    CAS  PubMed  Google Scholar 

  64. Pandya J, Spielman L (1983) Floc breakage in agitated suspensions: effect of agitation rate. Chem Eng Sci 38(12):1983–1992

    CAS  Google Scholar 

  65. Pinto MA, Immanuel CD, Doyle III FJ (2007) A feasible solution technique for higher-dimensional population balance models. Comput Chem Eng 31(10):1242–1256

    CAS  Google Scholar 

  66. Portillo PM, Muzzio FJ, Ierapetritou MG (2008) Using compartment modeling to investigate mixing behavior of a continuous mixer. J Pharm Innov 3:161–174

    Google Scholar 

  67. Prakash AV, Chaudhury A, Barrasso D, Ramachandran R (2013) Simulation of population balance model-based particulate processes via parallel and distributed computing. Chem Eng Res Des 91(7):1259–1271

    CAS  Google Scholar 

  68. Prakash AV, Chaudhury A, Ramachandran R (2013) Parallel simulation of population balance model-based particulate processes using multicore CPUs and GPUs. Model Simul Eng. doi:10.1155/2013/475478

    Article  Google Scholar 

  69. Puel F, Févotte G, Klein J (2003) Simulation and analysis of industrial crystallization processes through multidimensional population balance equations. Part 1: a resolution algorithm based on the method of classes. Chem Eng Sci 58(16):3715–3727

    CAS  Google Scholar 

  70. Qamar S, Galan K, Elsner MP, Hussain I, Seidel-Morgenstern A (2013) Theoretical investigation of simultaneous continuous preferential crystallization in a coupled mode. Chem Eng Sci 98:25–39

    CAS  Google Scholar 

  71. Ragnarsson G, Johansson MO (1988) Coated drug cores in multiple unit preparations influence of particle size. Drug Dev Ind Pharm 14(15–17):2285–2297

    CAS  Google Scholar 

  72. Ramachandran R, Chaudhury A (2012) Model-based design and control of a continuous drum granulation process. Chem Eng Res Des 90(8):1063–1073

    CAS  Google Scholar 

  73. Ramachandran R, Immanuel CD, Stepanek F, Litster JD, Doyle III FJ (2009) A mechanistic model for breakage in population balances of granulation: theoretical kernel development and experimental validation. Chem Eng Res Des 87(4):598–614

    CAS  Google Scholar 

  74. Ramkrishna D (2000) Population balances. Academic, San Diego

    Google Scholar 

  75. Reklaitis GV, Khinast J, Muzzio F (2010) Pharmaceutical engineering science - new approaches to pharmaceutical development and manufacturing. Chem Eng Sci 65:iv–vii

    Google Scholar 

  76. Remy B (2010) Granular flow, segregation and agglomeration in bladed mixers. PhD thesis, Rutgers, The State University of New Jersey

    Google Scholar 

  77. Remy B, Khinast J, Glasser B (2009) Discrete element simulation of free flowing grains in a four-bladed mixer. AIChE J 55:2035–2058

    CAS  Google Scholar 

  78. Reynolds GK (2010) Modelling of pharmaceutical granule size reduction in a conical screen mill. Chem Eng J 164(2–3):383–392

    CAS  Google Scholar 

  79. Ronsse F, Pieters J, Dewettinck K (2007) Combined population balance and thermodynamic modelling of the batch top-spray fluidised bed coating process. Part I—model development and validation. J Food Eng 78(1):296–307

    Google Scholar 

  80. Salman AD, Hounslow MJ, Seville JPK (2007) Granulation. Elsevier, Amsterdam

    Google Scholar 

  81. Sastry KV (1975) Similarity size distribution of agglomerates during their growth by coalescence in granulation or green pelletization. Int J Miner Process 2(2):187–203

    Google Scholar 

  82. Sen M, Ramachandran R (2013) A multi-dimensional population balance model approach to continuous powder mixing processes. Adv Powder Technol 24:51–59

    Google Scholar 

  83. Sen M, Singh R, Vanarase A, John J, Ramachandran R (2012) Multi-dimensional population balance modeling and experimental validation of continuous powder mixing processes. Chem Eng Sci 80:349–360

    CAS  Google Scholar 

  84. Sen M, Chaudhury A, Singh R, John J, Ramachandran R (2013) Multi-scale flowsheet simulation of an integrated continuous purification-downstream pharmaceutical manufacturing process. Int J Pharm 445(1–2):29–38

    CAS  PubMed  Google Scholar 

  85. Sen M, Chaudhury A, Singh R, Ramachandran R (2014) Two-dimensional population balance model development and validation of pharmaceutical crystallization processes. American Journal of Modern Chemical Engineering 1: 13–29

    Google Scholar 

  86. Sen M, Dubey A, Singh R, Ramachandran R (2013) Mathematical development and comparison of a hybrid pbm-dem description of a continuous powder mixing process. J Powder Technol. dx.doi.org/10.1155/2013/843784

    Google Scholar 

  87. Sen M, Rogers A, Singh R, Chaudhury A, John J, Ierapetritou MG, Ramachandran R (2013) Flowsheet optimization of an integrated continuous purification-processing pharmaceutical manufacturing operation. Chem Eng Sci 102:56–66

    CAS  Google Scholar 

  88. Sherony DF (1981) A model of surface renewal with application to fluid bed coating of particles. Chem Eng Sci 36(5):845–848

    CAS  Google Scholar 

  89. Stephanopoulos G, Reklaitis GV (2011) Process systems engineering: from solvay to modern bio- and nanotechnology: a history of development, successes and prospects for the future. Chem Eng Sci 66(19):4272–4306

    CAS  Google Scholar 

  90. Tan HS, Goldschmidt MJV, Boerefijn R, Hounslow MJ, Salman AD, Kuipers JAM (2004) Building population balance model for fluidized bed melt granulation: lessons from kinetic theory of granular flow. Powder Technol 30:103–109

    Google Scholar 

  91. Vanarase AU (2011) Design modeling and real time monitoring of continuous powder mixing processes. PhD thesis, Rutgers, The State University of New Jersey

    Google Scholar 

  92. Vanarase A, Muzzio F (2011) Effect of operating conditions and design parameters in a continuous powder mixer. Powder Technol 208(1):26–36

    CAS  Google Scholar 

  93. Vanderroost M, Ronsse F, Dewettinck K, Pieters J (2008) Population balance model for quality control of coating processes in fluidised beds. In: Proceedings of XVI international conference on bioencapsulation, p 23-1

    Google Scholar 

  94. Verkoeijen D, Pouw GA, Meesters GMH, Scarlett B (2002) Population balances for particulate processes–a volume approach. Chem Eng Sci 57(12):2287–2303

    CAS  Google Scholar 

  95. Vogel L, Peukert W (2003) Breakage behaviour of different materials—construction of a mastercurve for the breakage probability. Powder Technol 129(1–3):101–110

    CAS  Google Scholar 

  96. Wang F, Ge X, Balliu N, Cameron I (2006) Optimal control and operation of drum granulation processes. Chem Eng Sci 61(1):257–267

    CAS  Google Scholar 

  97. Wauters P (2001) Modelling and mechanisms of granulation. PhD thesis, Delft University of Technology, Delft

    Google Scholar 

  98. Wnukowski P, Setterwall F (1989) The coating of particles in a fluidized bed (residence time distribution in a system of two coupled perfect mixers). Chem Eng Sci 44(3):493–505

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rohit Ramachandran .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer Science+Business Media New York

About this protocol

Cite this protocol

Chaudhury, A., Sen, M., Barrasso, D., Ramachandran, R. (2016). Population Balance Models for Pharmaceutical Processes. In: Ierapetritou, M.G., Ramachandran, R. (eds) Process Simulation and Data Modeling in Solid Oral Drug Development and Manufacture. Methods in Pharmacology and Toxicology. Humana, New York, NY. https://doi.org/10.1007/978-1-4939-2996-2_2

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-2996-2_2

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-4939-2995-5

  • Online ISBN: 978-1-4939-2996-2

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics