Skip to main content

Applying Arginylation for Bottom-Up Proteomics

  • Protocol
Protein Arginylation

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1337))

Abstract

Arginylation is an enzymatic reaction in which arginyl-tRNA protein transferase 1 (ATE1, EC 2.3.2.8) conjugates a single arginyl moiety from aminoacylated tRNAArg onto a target polypeptide. We established arginylation for in vitro labeling of peptides with N-terminal acidic amino acids. Consistent with prior knowledge, arginylated peptides flanked by basic amino acids result in rich redundant MS/MS fragment spectra using various precursor fragmentation modes. Arginylation carried out by ATE1 is a fast method for labeling peptides. Sequence-specific proteolytic digest of proteins is best carried out using a double digest of proteins by Lys-C and Asp-N to generate peptides with a basic amino acid on the C-terminus and an acidic amino acid on the N-terminus. Under these conditions, arginylation is specific for N-terminal acidic amino acids and results in a near 2× sequence coverage in the MS/MS spectrum are achieved.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Kebarle P (2000) A brief overview of the present status of the mechanisms involved in electrospray mass spectrometry. J Mass Spectrom 35(7):804–817. doi:10.1002/1096-9888(200007)35:7<804::AID-JMS22>3.0.CO;2-Q

    Article  CAS  PubMed  Google Scholar 

  2. Dole M, Mack LL, Hines RL (1968) Molecular beams of macroions. J Chem Phys 49(5):2240–2249. doi:10.1063/1.1670391

    Article  CAS  Google Scholar 

  3. Fenn JB, Mann M, Meng CK, Wong SF, Whitehouse CM (1990) Electrospray ionization? Principles and practice. Mass Spectrom Rev 9(1):37–70

    Article  CAS  Google Scholar 

  4. Nguyen S, Fenn JB (2007) Gas-phase ions of solute species from charged droplets of solutions. Proc Natl Acad Sci U S A 104(4):1111–1117. doi:10.1073/pnas.0609969104

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  5. Carr SR, Cassady CJ (1997) Reactivity and gas-phase acidity determinations of small peptide ions consisting of 11 to 14 amino acid residues. J Mass Spectrom 32(9):959–967. doi:10.1002/(SICI)1096-9888(199709)32:9<959::AID-JMS552>3.0.CO;2-5

    Article  CAS  PubMed  Google Scholar 

  6. Carabetta VJ, Li T, Shakya A, Greco TM, Cristea IM (2010) Integrating Lys-N proteolysis and N-terminal guanidination for improved fragmentation and relative quantification of singly-charged ions. J Am Soc Mass Spectrom 21(6):1050–1060. doi:10.1016/j.jasms.2010.02.004

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  7. Boersema PJ, Taouatas N, Altelaar AF, Gouw JW, Ross PL, Pappin DJ, Heck AJ, Mohammed S (2009) Straightforward and de novo peptide sequencing by MALDI-MS/MS using a Lys-N metalloendopeptidase. Mol Cell Proteomics 8(4):650–660. doi:10.1074/mcp.M800249-MCP200

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  8. Somogyi A, Wysocki VH, Mayer I (1994) The effect of protonation site on bond strengths in simple peptides: application of ab initio and modified neglect of differential overlap bond orders and modified neglect of differential overlap energy partitioning. J Am Soc Mass Spectrom 5(8):704–717. doi:10.1016/1044-0305(94)80002-2

    Article  CAS  PubMed  Google Scholar 

  9. Dongre AR, Somogyi A, Wysocki VH (1996) Surface-induced dissociation: an effective tool to probe structure, energetics and fragmentation mechanisms of protonated peptides. J Mass Spectrom 31(4):339–350. doi:10.1002/(SICI)1096-9888(199604)31:4<339::AID-JMS322>3.0.CO;2-L

    Article  CAS  PubMed  Google Scholar 

  10. Vaisar T, Urban J (1996) Probing the proline effect in CID of protonated peptides. J Mass Spectrom 31(10):1185–1187. doi:10.1002/(SICI)1096-9888(199610)31:10<1185::AID-JMS396>3.0.CO;2-Q

    Article  CAS  PubMed  Google Scholar 

  11. Tsaprailis G, Nair H, Zhong W, Kuppannan K, Futrell JH, Wysocki VH (2004) A mechanistic investigation of the enhanced cleavage at histidine in the gas-phase dissociation of protonated peptides. Anal Chem 76(7):2083–2094. doi:10.1021/ac034971j

    Article  CAS  PubMed  Google Scholar 

  12. Seidler J, Zinn N, Boehm ME, Lehmann WD (2010) De novo sequencing of peptides by MS/MS. Proteomics 10(4):634–649. doi:10.1002/pmic.200900459

    Article  CAS  PubMed  Google Scholar 

  13. Domon B, Aebersold R (2006) Challenges and opportunities in proteomics data analysis. Mol Cell Proteomics 5(10):1921–1926. doi:10.1074/mcp.R600012-MCP200

    Article  CAS  PubMed  Google Scholar 

  14. Dancik V, Addona TA, Clauser KR, Vath JE, Pevzner PA (1999) De novo peptide sequencing via tandem mass spectrometry. J Comput Biol 6(3–4):327–342. doi:10.1089/106652799318300

    Article  CAS  PubMed  Google Scholar 

  15. Frank AM, Savitski MM, Nielsen ML, Zubarev RA, Pevzner PA (2007) De novo peptide sequencing and identification with precision mass spectrometry. J Proteome Res 6(1):114–123. doi:10.1021/pr060271u

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  16. Mann M, Wilm M (1994) Error-tolerant identification of peptides in sequence databases by peptide sequence tags. Anal Chem 66(24):4390–4399

    Article  CAS  PubMed  Google Scholar 

  17. Kapp EA, Schutz F, Connolly LM, Chakel JA, Meza JE, Miller CA, Fenyo D, Eng JK, Adkins JN, Omenn GS, Simpson RJ (2005) An evaluation, comparison, and accurate benchmarking of several publicly available MS/MS search algorithms: sensitivity and specificity analysis. Proteomics 5(13):3475–3490. doi:10.1002/pmic.200500126

    Article  CAS  PubMed  Google Scholar 

  18. Creasy DM, Cottrell JS (2002) Error tolerant searching of uninterpreted tandem mass spectrometry data. Proteomics 2(10):1426–1434. doi:10.1002/1615-9861(200210)2:10<1426::AID-PROT1426>3.0.CO;2-5

    Article  CAS  PubMed  Google Scholar 

  19. McCormack AL, Schieltz DM, Goode B, Yang S, Barnes G, Drubin D, Yates JR III (1997) Direct analysis and identification of proteins in mixtures by LC/MS/MS and database searching at the low-femtomole level. Anal Chem 69(4):767–776

    Article  CAS  PubMed  Google Scholar 

  20. Eng JK, McCormack AL, Yates JR (1994) An approach to correlate tandem mass spectral data of peptides with amino acid sequences in a protein database. J Am Soc Mass Spectrom 5(11):976–989. doi:10.1016/1044-0305(94)80016-2

    Article  CAS  PubMed  Google Scholar 

  21. Michalski A, Cox J, Mann M (2011) More than 100,000 detectable peptide species elute in single shotgun proteomics runs but the majority is inaccessible to data-dependent LC-MS/MS. J Proteome Res 10(4):1785–1793. doi:10.1021/pr101060v

    Article  CAS  PubMed  Google Scholar 

  22. Balzi E, Choder M, Chen WN, Varshavsky A, Goffeau A (1990) Cloning and functional analysis of the arginyl-tRNA-protein transferase gene ATE1 of Saccharomyces cerevisiae. J Biol Chem 265(13):7464–7471

    CAS  PubMed  Google Scholar 

  23. Ebhardt HA, Nan J, Chaulk SG, Fahlman RP, Aebersold R (2014) Enzymatic generation of peptides flanked by basic amino acids to obtain MS/MS spectra with 2× sequence coverage. Rapid Commun Mass Spectrom 28(24):2735–2743. doi:10.1002/rcm.7069

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  24. Shi PY, Weiner AM, Maizels N (1998) A top-half tDNA minihelix is a good substrate for the eubacterial CCA-adding enzyme. RNA (New York, NY) 4(3):276–284

    CAS  Google Scholar 

  25. Ebhardt HA, Xu Z, Fung AW, Fahlman RP (2009) Quantification of the post-translational addition of amino acids to proteins by MALDI-TOF mass spectrometry. Anal Chem 81(5):1937–1943

    Article  CAS  PubMed  Google Scholar 

  26. Fung AW, Ebhardt HA, Abeysundara H, Moore J, Xu Z, Fahlman RP (2011) An alternative mechanism for the catalysis of peptide bond formation by L/F transferase: substrate binding and orientation. J Mol Biol 409(4):617–629. doi:10.1016/j.jmb.2011.04.033, S0022-2836(11)00448-7 [pii]

    Article  CAS  PubMed  Google Scholar 

  27. Juhling F, Morl M, Hartmann RK, Sprinzl M, Stadler PF, Putz J (2009) tRNAdb 2009: compilation of tRNA sequences and tRNA genes. Nucleic Acids Res 37(Database issue):D159–D162

    Article  PubMed Central  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by a FP7 Marie Curie International Incoming Fellowship to HAE.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to H. Alexander Ebhardt .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer Science+Business Media New York

About this protocol

Cite this protocol

Ebhardt, H.A. (2015). Applying Arginylation for Bottom-Up Proteomics. In: Kashina, A. (eds) Protein Arginylation. Methods in Molecular Biology, vol 1337. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-2935-1_16

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-2935-1_16

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-2934-4

  • Online ISBN: 978-1-4939-2935-1

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics