Skip to main content

Computational Methods to Model Persistence

  • Protocol
Bacterial Persistence

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1333))

Abstract

Bacterial persister cells are dormant cells, tolerant to multiple antibiotics, that are involved in several chronic infections. Toxin–antitoxin modules play a significant role in the generation of such persister cells. Toxin–antitoxin modules are small genetic elements, omnipresent in the genomes of bacteria, which code for an intracellular toxin and its neutralizing antitoxin. In the past decade, mathematical modeling has become an important tool to study the regulation of toxin–antitoxin modules and their relation to the emergence of persister cells. Here, we provide an overview of several numerical methods to simulate toxin–antitoxin modules. We cover both deterministic modeling using ordinary differential equations and stochastic modeling using stochastic differential equations and the Gillespie method. Several characteristics of toxin–antitoxin modules such as protein production and degradation, negative autoregulation through DNA binding, toxin–antitoxin complex formation and conditional cooperativity are gradually integrated in these models. Finally, by including growth rate modulation, we link toxin–antitoxin module expression to the generation of persister cells.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Pomerening JR, Sontag ED, Ferrell JE Jr (2003) Building a cell cycle oscillator: hysteresis and bistability in the activation of Cdc2. Nat Cell Biol 5(4):346–351

    Article  CAS  PubMed  Google Scholar 

  2. Novak B, Tyson JJ (1993) Numerical analysis of a comprehensive model of M-phase control in Xenopus oocyte extracts and intact embryos. J Cell Sci 106(Pt 4):1153–1168

    CAS  PubMed  Google Scholar 

  3. Noble D (2004) Modeling the heart. Physiology (Bethesda) 19:191–197

    Article  CAS  Google Scholar 

  4. Grassly NC, Fraser C (2008) Mathematical models of infectious disease transmission. Nat Rev Microbiol 6(6):477–487

    CAS  PubMed  Google Scholar 

  5. Cataudella I, Trusina A, Sneppen K, Gerdes K, Mitarai N (2012) Conditional cooperativity in toxin-antitoxin regulation prevents random toxin activation and promotes fast translational recovery. Nucleic Acids Res 40(14):6424–6434

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  6. Kussell E, Kishony R, Balaban NQ, Leibler S (2005) Bacterial persistence: a model of survival in changing environments. Genetics 169(4):1807–1814

    Article  PubMed Central  PubMed  Google Scholar 

  7. Balaban NQ, Merrin J, Chait R, Kowalik L, Leibler S (2004) Bacterial persistence as a phenotypic switch. Science 305(5690):1622–1625

    Article  CAS  PubMed  Google Scholar 

  8. Cogan NG (2007) Incorporating toxin hypothesis into a mathematical model of persister formation and dynamics. J Theor Biol 248(2):340–349

    Article  CAS  PubMed  Google Scholar 

  9. Rotem E, Loinger A, Ronin I, Levin-Reisman I, Gabay C, Shoresh N, Biham O, Balaban NQ (2010) Regulation of phenotypic variability by a threshold-based mechanism underlies bacterial persistence. Proc Natl Acad Sci USA 107(28):12541–12546

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  10. Lou C, Li Z, Ouyang Q (2008) A molecular model for persister in E. coli. J Theor Biol 255(2):205–209

    Article  CAS  PubMed  Google Scholar 

  11. Koh RS, Dunlop MJ (2012) Modeling suggests that gene circuit architecture controls phenotypic variability in a bacterial persistence network. BMC Syst Biol 6:47

    Article  PubMed Central  PubMed  Google Scholar 

  12. Cataudella I, Sneppen K, Gerdes K, Mitarai N (2013) Conditional cooperativity of toxin - antitoxin regulation can mediate bistability between growth and dormancy. PLoS Comput Biol 9(8):e1003174

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  13. Fasani RA, Savageau MA (2013) Molecular mechanisms of multiple toxin-antitoxin systems are coordinated to govern the persister phenotype. Proc Natl Acad Sci USA 110(27):E2528–E2537

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  14. Gelens L, Hill L, Vandervelde A, Danckaert J, Loris R (2013) A general model for toxin-antitoxin module dynamics can explain persister cell formation in E. coli. PLoS Comput Biol 9(8):e1003190

    Google Scholar 

  15. Feng J, Kessler DA, Ben-Jacob E, Levine H (2014) Growth feedback as a basis for persister bistability. Proc Natl Acad Sci USA 111(1):544–549

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  16. Lewis K (2010) Persister cells. Annu Rev Microbiol 64:357–372

    Article  CAS  PubMed  Google Scholar 

  17. Fauvart M, De Groote VN, Michiels J (2011) Role of persister cells in chronic infections: clinical relevance and perspectives on anti-persister therapies. J Med Microbiol 60(Pt 6):699–709

    Article  PubMed  Google Scholar 

  18. Maisonneuve E, Gerdes K (2014) Molecular mechanisms underlying bacterial persisters. Cell 157(3):539–548

    Article  CAS  PubMed  Google Scholar 

  19. Maisonneuve E, Castro-Camargo M, Gerdes K (2013) (p)ppGpp controls bacterial persistence by stochastic induction of toxin-antitoxin activity. Cell 154(5):1140–1150

    Article  CAS  PubMed  Google Scholar 

  20. Pandey DP, Gerdes K (2005) Toxin-antitoxin loci are highly abundant in free-living but lost from host-associated prokaryotes. Nucleic Acids Res 33(3):966–976

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  21. Fozo EM, Hemm MR, Storz G (2008) Small toxic proteins and the antisense RNAs that repress them. Microbiol Mol Biol Rev 72(4):579–589

    Google Scholar 

  22. Gerdes K, Maisonneuve E (2012) Bacterial persistence and toxin-antitoxin loci. Annu Rev Microbiol 66:103–123

    Article  CAS  PubMed  Google Scholar 

  23. Buts L, Lah J, Dao-Thi MH, Wyns L, Loris R (2005) Toxin-antitoxin modules as bacterial metabolic stress managers. Trends Biochem Sci 30(12):672–679

    Article  CAS  PubMed  Google Scholar 

  24. Yamaguchi Y, Park JH, Inouye M (2011) Toxin-antitoxin systems in bacteria and archaea. Annu Rev Genet 45:61–79

    Article  CAS  PubMed  Google Scholar 

  25. Blower TR, Salmond GP, Luisi BF (2011) Balancing at survival’s edge: the structure and adaptive benefits of prokaryotic toxin-antitoxin partners. Curr Opin Struct Biol 21(1):109–118

    Article  CAS  PubMed  Google Scholar 

  26. Blower TR, Short FL, Rao F, Mizuguchi K, Pei XY, Fineran PC, Luisi BF, Salmond GP (2012) Identification and classification of bacterial Type III toxin-antitoxin systems encoded in chromosomal and plasmid genomes. Nucleic Acids Res 40(13):6158–6173

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  27. Wang X, Lord DM, Cheng HY, Osbourne DO, Hong SH, Sanchez-Torres V, Quiroga C, Zheng K, Herrmann T, Peti W, Benedik MJ, Page R, Wood TK (2012) A new type V toxin-antitoxin system where mRNA for toxin GhoT is cleaved by antitoxin GhoS. Nat Chem Biol 8(10):855–861

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  28. Maisonneuve E, Shakespeare LJ, Jorgensen MG, Gerdes K (2011) Bacterial persistence by RNA endonucleases. Proc Natl Acad Sci USA 108(32):13206–13211

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  29. Helaine S, Cheverton AM, Watson KG, Faure LM, Matthews SA, Holden DW (2014) Internalization of Salmonella by macrophages induces formation of nonreplicating persisters. Science 343(6167):204–208

    Article  CAS  PubMed  Google Scholar 

  30. Tripathi A, Dewan PC, Barua B, Varadarajan R (2012) Additional role for the ccd operon of F-plasmid as a transmissible persistence factor. Proc Natl Acad Sci USA 109(31):12497–12502

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  31. Tian QB, Ohnishi M, Tabuchi A, Terawaki Y (1996) A new plasmid-encoded proteic killer gene system: cloning, sequencing, and analyzing hig locus of plasmid Rts1. Biochem Biophys Res Commun 220(2):280–284

    Article  CAS  PubMed  Google Scholar 

  32. Yamaguchi Y, Park JH, Inouye M (2009) MqsR, a crucial regulator for quorum sensing and biofilm formation, is a GCU-specific mRNA interferase in Escherichia coli. J Biol Chem 284(42):28746–28753

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  33. Hallez R, Geeraerts D, Sterckx Y, Mine N, Loris R, Van Melderen L (2010) New toxins homologous to ParE belonging to three-component toxin-antitoxin systems in Escherichia coli O157:H7. Mol Microbiol 76(3):719–732

    Article  CAS  PubMed  Google Scholar 

  34. Overgaard M, Borch J, Gerdes K (2009) RelB and RelE of Escherichia coli form a tight complex that represses transcription via the ribbon-helix-helix motif in RelB. J Mol Biol 394(2):183–196

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  35. Schumacher MA, Piro KM, Xu W, Hansen S, Lewis K, Brennan RG (2009) Molecular mechanisms of HipA-mediated multidrug tolerance and its neutralization by HipB. Science 323(5912):396–401

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  36. Loris R, Dao-Thi MH, Bahassi EM, Van Melderen L, Poortmans F, Liddington R, Couturier M, Wyns L (1999) Crystal structure of CcdB, a topoisomerase poison from E. coli. J Mol Biol 285(4):1667–1677

    Article  CAS  PubMed  Google Scholar 

  37. Li GY, Zhang Y, Chan MC, Mal TK, Hoeflich KP, Inouye M, Ikura M (2006) Characterization of dual substrate binding sites in the homodimeric structure of Escherichia coli mRNA interferase MazF. J Mol Biol 357(1):139–150

    Article  CAS  PubMed  Google Scholar 

  38. Garcia-Pino A, Balasubramanian S, Wyns L, Gazit E, De Greve H, Magnuson RD, Charlier D, van Nuland NA, Loris R (2010) Allostery and intrinsic disorder mediate transcription regulation by conditional cooperativity. Cell 142(1):101–111

    Article  CAS  PubMed  Google Scholar 

  39. Afif H, Allali N, Couturier M, Van Melderen L (2001) The ratio between CcdA and CcdB modulates the transcriptional repression of the ccd poison-antidote system. Mol Microbiol 41(1):73–82

    Article  CAS  PubMed  Google Scholar 

  40. Overgaard M, Borch J, Jorgensen MG, Gerdes K (2008) Messenger RNA interferase RelE controls relBE transcription by conditional cooperativity. Mol Microbiol 69(4):841–857

    Article  CAS  PubMed  Google Scholar 

  41. De Jonge N, Garcia-Pino A, Buts L, Haesaerts S, Charlier D, Zangger K, Wyns L, De Greve H, Loris R (2009) Rejuvenation of CcdB-poisoned gyrase by an intrinsically disordered protein domain. Mol Cell 35(2):154–163

    Article  PubMed  Google Scholar 

  42. Brown BL, Lord DM, Grigoriu S, Peti W, Page R (2013) The Escherichia coli toxin MqsR destabilizes the transcriptional repression complex formed between the antitoxin MqsA and the mqsRA operon promoter. J Biol Chem 288(2):1286–1294

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  43. Magnuson R, Lehnherr H, Mukhopadhyay G, Yarmolinsky MB (1996) Autoregulation of the plasmid addiction operon of bacteriophage P1. J Biol Chem 271(31):18705–18710

    Article  CAS  PubMed  Google Scholar 

  44. Dao-Thi MH, Charlier D, Loris R, Maes D, Messens J, Wyns L, Backmann J (2002) Intricate interactions within the ccd plasmid addiction system. J Biol Chem 277(5):3733–3742

    Article  CAS  PubMed  Google Scholar 

  45. McAdams HH, Arkin A (1999) It’s a noisy business! Genetic regulation at the nanomolar scale. Trends Genet 15(2):65–69

    Article  CAS  PubMed  Google Scholar 

  46. Elowitz MB, Levine AJ, Siggia ED, Swain PS (2002) Stochastic gene expression in a single cell. Science 297(5584):1183–1186

    Article  CAS  PubMed  Google Scholar 

  47. Ozbudak EM, Thattai M, Kurtser I, Grossman AD, van Oudenaarden A (2002) Regulation of noise in the expression of a single gene. Nat Genet 31(1):69–73

    Article  CAS  PubMed  Google Scholar 

  48. Carrier GF (1968) Ordinary differential equations. A Blaisdell book in pure and applied mathematics. Blaisdell Pub. Co, Waltham, MA

    Google Scholar 

  49. Atkinson K, Han W, Stewart DE (2009) Numerical solution of ordinary differential equations. Pure and applied mathematics. Wiley, Hoboken, NJ

    Book  Google Scholar 

  50. Coffey WT, Kalmykov YP, Waldron JT (2004) The Langevin equation. With applications to stochastic problems in physics, chemistry and electrical engineering. World Scientific series in contemporary chemical physics. World Scientific Publishing, Singapore

    Google Scholar 

  51. Gardiner CW (2004) Handbook of stochastic methods for physics, chemistry, and the natural sciences. Springer, Berlin

    Book  Google Scholar 

  52. San Miguel M, Toral R (2000) Stochastic effects in physical systems. In: Instabilities and nonequilibrium structures VI. Springer, Netherlands, pp 35–127

    Google Scholar 

  53. Gillespie DT (1977) Exact stochastic simulation of coupled chemical reactions. J Phys Chem 81(25):2340–2361

    Article  CAS  Google Scholar 

  54. Cai L, Friedman N, Xie XS (2006) Stochastic protein expression in individual cells at the single molecule level. Nature 440(7082):358–362

    Article  CAS  PubMed  Google Scholar 

  55. McAdams HH, Arkin A (1997) Stochastic mechanisms in gene expression. Proc Natl Acad Sci USA 94(3):814–819

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  56. Loris R, Garcia-Pino A (2014) Disorder- and dynamics-based regulatory mechanisms in toxin-antitoxin modules. Chem Rev 114(13):6933–6947

    Article  CAS  PubMed  Google Scholar 

  57. Hayes F, Van Melderen L (2011) Toxins-antitoxins: diversity, evolution and function. Crit Rev Biochem Mol Biol 46(5):386–408

    Article  CAS  PubMed  Google Scholar 

  58. Nevozhay D, Adams RM, Van Itallie E, Bennett MR, Balazsi G (2012) Mapping the environmental fitness landscape of a synthetic gene circuit. PLoS Comput Biol 8(4):e1002480

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  59. Castro-Roa D, Garcia-Pino A, De Gieter S, van Nuland NA, Loris R, Zenkin N (2013) The Fic protein Doc uses an inverted substrate to phosphorylate and inactivate EF-Tu. Nat Chem Biol 9(12):811–817

    Article  CAS  PubMed  Google Scholar 

  60. Christensen SK, Gerdes K (2003) RelE toxins from bacteria and Archaea cleave mRNAs on translating ribosomes, which are rescued by tmRNA. Mol Microbiol 48(5):1389–1400

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This research was supported by the Vlaams Interuniversitair Instituut voor Biotechnologie (VIB), by the Research Foundation - Flanders (FWO-Vlaanderen) for project support and individual support (A.V. and L.G.), by the Belgian American Educational Foundation (L.G.), and by the Onderzoeksraad of the Vrije Universiteit Brussel. The authors thank Lydia Hill, Abel Garcia-Pino, and Egon Geerardyn for fruitful discussions.

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Appendices

Appendix 1: Numerical Code to Solve an ODE/SDE

A simple matlab code to solve Eq. 10, with (D ≠ 0) or without noise (D = 0), can be found here below:

1  function ODE_SDE

3 %% parameters

4 prodAT    = 0.0530 * 0.116086/0.00203;

5 degrAT    = 2.8881e-4;

6 D               = 25;

7 dt             = 0.01;        % [s] simulation time step

8 dt_save  = 10;            % [s] plotting time step

9 t_end      = 5*60*60;  % [s] final time

10 

11 %% initialize system

12 AT              = 0;

13 t_saved   = [];

14 AT_saved = [];

15 count       = 0;

16 

17 %% simulate the stochastic differential equation

18 for n = 0:((t_end)/dt)

19        t = n * dt;

20 

21     %% Euler-Heun

22  noise = sqrt(D) * sqrt(dt) * randn(); % sample from the noise

23 

24     AT_star = AT + dt * F(AT) + noise;

25     AT      = AT + (dt/2)*(F(AT) + F(AT_star)) + noise/2;

26 AT = max(AT, 0); % force protein concentration to be positive

27 

28     %% Save data

29         if (count == dt_save/dt)

30         t_saved(end+1) = t;

31         AT_saved(end+1) = AT;

32         count = 0;

33     end

34     count = count + 1;

35 

36 end

37 

38 %% plot the results

39 figure;

40 plot(t_saved./3600, AT_saved, 'k');

41 xlabel('Time (h)')

42 ylabel('AT')

43 

44 %% definition of the differential equation

45     function dATdt = F(TA)

46         dATdt = prodAT - degrAT*TA;

47     end

48 end

Appendix 2: Numerical Code Using the Gillespie Algorithm

A simple matlab code to solve Eq. 1 using the stochastic Gillespie Algorithm can be found here below:

1  % Gillespie code

2 % There are 2 reactions and there is one species AT

4 %% Parameters

5 prodAT = 0.0530*0.116086/0.00203; % reaction 0  -> AT

6 degrAT = 2.8881e-4;                               % reaction AT -> 0

8 %% Initialization

9 AT                  = 0;              % [AT] initial concentration AT

10 t                  = 0;              % [s] starting time

11 t_end         = 5*60*60; % [s] final time

12 t_saved    = [];            % [s] stored times

13 AT_saved   = [];

14 

15 %% Simulation

16 while t <= t_end

17     %% Update propensities

18     p1 = degrAT * AT;

19     p2 = prodAT;

20 

21     %% Computation of the random time step

22     p0  = p1 + p2;

23     r1  = rand();

24     r2  = rand();

25     dt  = 1/p0 * log(1/r1); % [s] next time step

26 

27     %% Selection of random reaction

28     %% Update the population based on selected reaction

29     yr2 = r2 * p0;

30     if yr2 <= p1

31         % reaction 1

32         AT = AT - 1;

33     else

34         % reaction 2

35         AT = AT + 1;

36     end

37 

38     %% Update the current time

39     t = t + dt;

40 

41     %% Save population information

42     t_saved(end+1) = t;

43     AT_saved(end+1) = AT;

44 

45 end

46 

47 %% plot the results

48 figure;

49 plot(t_saved./3600, AT_saved, 'k');

50 xlabel('Time (h)')

51 ylabel('AT')

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer Science+Business Media New York

About this protocol

Cite this protocol

Vandervelde, A., Loris, R., Danckaert, J., Gelens, L. (2016). Computational Methods to Model Persistence. In: Michiels, J., Fauvart, M. (eds) Bacterial Persistence. Methods in Molecular Biology, vol 1333. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-2854-5_17

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-2854-5_17

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-2853-8

  • Online ISBN: 978-1-4939-2854-5

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics