Skip to main content

Part of the book series: Fields Institute Monographs ((FIM,volume 34))

Abstract

We survey recent developments in Hodge theory which are closely tied to families of CY varieties, including Mumford-Tate groups and boundary components, as well as limits of normal functions and generalized Abel-Jacobi maps. While many of the techniques are representation-theoretic rather than motivic, emphasis is placed throughout on the (known and conjectural) arithmetic properties accruing to geometric variations.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 119.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 159.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    That is, its finite-dimensional representations are reducible.

  2. 2.

    Of course, one can play the same game with \(\underline{h} = (1,n,n, 1)\) and \(\underline{h}_{+} = (1,n, 0, 0)\) to embed \(\mathbb{B}_{n}\) in a non-Hermitian period domain.

  3. 3.

    Here \(\mathbb{V}\) is a \(\mathbb{Q}\)-local system, \(\mathcal{V}:= \mathbb{V} \otimes \mathcal{O}_{\mathcal{S}}\) the [sheaf of sections of the] holomorphic vector bundle, and \(\mathcal{F}^{\bullet }\) a filtration by [sheaves of sections of] holomorphic subbundles.

  4. 4.

    We thank C. Robles for providing this example.

  5. 5.

    That is, p is a point of maximal transcendence degree; equivalently, it lies in the complement of the complex points of countably many \(\bar{\mathbb{Q}}\)-subvarieties.

  6. 6.

    Added in proof: By a recent result of M. Yoshinaga (arXiv:0805.0349v1), it turns out that the non-elementary real numbers cannot be real or imaginary parts of periods in the sense of Kontsevich and Zagier. For the period domain D = D (1, 0, 0, 1), the spread argument shows that the period ratio of any motivic HS in D is a K-Z period, solving the problem as stated (take τ to be \(\sqrt{-1}\) times a non-elementary real number). So the problem should be reformulated to ask whether one has elementary non-motivic Hodge structures, i.e. ones all of whose periods have elementary real and imaginary parts. (We thank W. Xiuli for pointing out Yoshinaga’s article.)

  7. 7.

    While there is nothing conjectural about our construction of F BB , the existence of a “Bloch-Beilinson filtration” is conjectural. Our F BB only qualifies as one if \(\cap _{i}F_{BB}^{i} =\{ 0\}\); this depends on the injectivity of Ψ, which is sometimes called the “arithmetic Bloch-Beilinson conjecture”.

  8. 8.

    This is just (an arithmetic quotient of) a M-T domain for HS of level one cut out by 2-tensors.

  9. 9.

    Note: dropping the \(\mathbb{Z}\) will mean \(\mathbb{Q}\)-coefficients.

  10. 10.

    This can be done over \(\mathbb{R}\) precisely when the LMHS is \(\mathbb{R}\)-split, i.e. \(I^{p,q} = \overline{I^{q,p}}\) exactly.

  11. 11.

    This class can be derived from work of Iritani [20, 31].

  12. 12.

    Their theorem applies to the more general setting \([\mathfrak{z}\vert _{\mathcal{X}^{{\ast}}}] = 0\) in \(H^{2m}(\mathcal{X}^{{\ast}})\).

  13. 13.

    There is a related important construction of Schnell which leads to a very natural proof of the algebraicity of 0-loci of normal functions [51]. Also note that, while Hausdorff, \(\hat{\mathcal{J}}_{e}\) may not be a complex analytic space: the fiber over 0 usually has lower dimension than the other fibers (cf. Sect. 4.2.5).

References

  1. Abdulali, S.: Hodge structures of CM type. J. Ramanujan Math. Soc. 20(2), 155–162 (2005)

    MathSciNet  MATH  Google Scholar 

  2. Allcock, D., Carlson, J., Toledo, D.: The complex hyperbolic geometry of the moduli space of cubic surfaces. J. Algebr. Geom. 11(4), 659–724 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  3. Allcock, D., Carlson, J., Toledo, D.: The moduli space of cubic threefolds as a ball quotient. Mem. Am. Math. Soc. 209(985), xii+70 (2011)

    Google Scholar 

  4. André, Y.: Mumford-Tate groups of mixed Hodge structures and the theorem of the fixed part. Compositio Math. 82(1), 1–24 (1992)

    MathSciNet  MATH  Google Scholar 

  5. André, Y.: Galois theory, motives, and transcendental numbers (2008, preprint). arXiv:0805.2569

    Google Scholar 

  6. Arapura, D., Kumar, M.: Beilinson-Hodge cycles on semiabelian varieties. Math. Res. Lett. 16(4), 557–562 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  7. Brosnan, P., Pearlstein, G.: On the algebraicity of the zero locus of an admissible normal function. Compositio Math. 149, 1913–1962 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  8. Brosnan, P., Fang, H., Nie, Z., Pearlstein, G.: Singularities of normal functions. Invent. Math. 177, 599–629 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  9. Candelas, P., de la Ossa, X., Green, P., Parkes, L.: A pair of manifolds as an exactly solvable superconformal theory. Nucl. Phys. B359, 21–74 (1991)

    Article  Google Scholar 

  10. Carlson, J.: Bounds on the dimensions of variations of Hodge structure. Trans. Am. Math. Soc. 294, 45–64 (1986); Erratum, Trans. Am. Math. Soc. 299, 429 (1987)

    Google Scholar 

  11. Cattani, E.: Mixed Hodge Structures, Compactifications and Monodromy Weight Filtration. Annals of Math Study, vol. 106, pp. 75–100. Princeton University Press, Princeton (1984)

    Google Scholar 

  12. Cattani, E., Deligne, P., Kaplan, A.: On the locus of Hodge classes. JAMS 8, 483–506 (1995)

    MathSciNet  MATH  Google Scholar 

  13. Cattani, E., Kaplan, A., Schmid, W.: Degeneration of Hodge structures. Ann. Math. 123, 457–535 (1986)

    Article  MathSciNet  MATH  Google Scholar 

  14. Charles, F.: On the zero locus of normal functions and the étale Abel-Jacobi map. IMRN 2010(12), 2283–2304 (2010)

    MathSciNet  MATH  Google Scholar 

  15. Clingher, A., Doran, C.: Modular invariants for lattice polarized K3 surfaces. Mich. Math. J. 55(2), 355–393 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  16. Cohen, P.: Humbert surfaces and transcendence properties of automorphic functions. Rocky Mt. J. Math. 26(3), 987–1001 (1996)

    Article  MATH  Google Scholar 

  17. da Silva, G., Jr., Kerr, M., Pearlstein, G.: Arithmetic of degenerating principal VHS: examples arising from mirror symmetry and middle convolution. Can. J. Math (2015 to appear)

    Google Scholar 

  18. Deligne, P.: Hodge cycles on abelian varieties (Notes by J. S. Milne). In: Deligne, P. (ed.) Hodge Cycles, Motives, and Shimura Varieties. Lecture Notes in Mathematics, vol. 900, pp. 9–100. Springer, New York (1982)

    Chapter  Google Scholar 

  19. Dettweiler, M., Reiter, S.: Rigid local systems and motives of type G 2. Compositio Math. 146, 929–963 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  20. Doran, C., Kerr, M.: Algebraic cycles and local quantum cohomology Commun. Number Theory Phys. 8, 703–727 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  21. Doran, C., Morgan, J.: Mirror symmetry and integral variations of Hodge structure underlying one-parameter families of Calabi-Yau threefolds. In: Mirror Symmetry V: Proceedings of the BIRS Workshop on CY Varieties and Mirror Symmetry, Banff, Dec 2003. AMS/IP Studies in Advanced Mathematics, vol. 38, pp. 517–537. AMS, Providence (2006)

    Google Scholar 

  22. El Zein, F., Zucker, S.: Extendability of normal functions associated to algebraic cycles. In: Griffiths, P. (ed.) Topics in Transcendental Algebraic Geometry. Annals of Mathematics Studies, vol. 106. Princeton University Press, Princeton (1984)

    Google Scholar 

  23. Friedman, R., Laza, R.: Semi-algebraic horizontal subvarieties of Calabi-Yau type (2011, preprint). To appear in Duke Math. J., available at arXiv:1109.5632

    Google Scholar 

  24. Green, M., Griffiths, P.: Algebraic cycles and singularities of normal functions. In: Nagel, J., Peters, C. (eds.) Algebraic Cycles and Motives. LMS Lecture Note Series, vol. 343, pp. 206–263, Cambridge University Press, Cambridge (2007)

    Google Scholar 

  25. Green, M., Griffiths, P., Kerr, M.: Neron models and boundary components for degenerations of Hodge structures of mirror quintic type. In: Alexeev, V. (ed.) Curves and Abelian Varieties. Contemporary Mathematics, vol. 465, pp. 71–145. AMS, Providence (2007)

    Chapter  Google Scholar 

  26. Green, M., Griffiths, P., Kerr, M.: Néron models and limits of Abel-Jacobi mappings. Compositio Math. 146, 288–366 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  27. Green, M., Griffiths, P., Kerr, M.: Mumford-Tate Groups and Domains. Their Geometry and Arithmetic. Annals of Mathematics Studies, vol. 183. Princeton University Press, Princeton (2012)

    Google Scholar 

  28. Griffiths, P., Robles, C., Toledo, D.: Quotients of non-classical flag domains are not algebraic (2013, preprint). Available at arXiv:1303.0252

    Google Scholar 

  29. Hazama, F.: Hodge cycles on certain abelian varieties and powers of special surfaces. J. Fac. Sci. Univ. Tokyo Sect. 1a 31, 487–520 (1984)

    Google Scholar 

  30. Holzapfel, R.-P.: The Ball and Some Hilbert Problems. Birkhäuser, Basel (1995)

    Book  MATH  Google Scholar 

  31. Iritani, H.: An integral structure in quantum cohomology and mirror symmetry for toric orbifolds. Adv. Math. 222(3), 1016–1079 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  32. Jefferson, R., Walcher, J.: Monodromy of inhomogeneous Picard-Fuchs equations (2013, preprint). arXiv:1309.0490

    Google Scholar 

  33. Kato, K., Usui, S.: Classifying Spaces of Degenerating Polarized Hodge Structure. Annals of Mathematics Studies, vol. 169, Princeton University Press, Princeton (2009)

    Google Scholar 

  34. Katz, N.: Rigid Local Systems. Princeton University Press, Princeton (1995)

    Google Scholar 

  35. Kerr, M., Lewis, J.: The Abel-Jacobi map for higher Chow groups, II. Invent. Math. 170, 355–420 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  36. Kerr, M., Pearlstein, G.: An exponential history of functions with logarithmic growth. In: Friedman, G. et al. (eds.) Topology of Stratified Spaces. MSRI Publications, vol. 58. Cambridge University Press, New York (2011)

    Google Scholar 

  37. Kerr, M., Pearlstein, G.: Boundary Components of Mumford-Tate Domains. Duke Math. J. (to appear). arXiv:1210.5301

    Google Scholar 

  38. Kerr, M., Pearlstein, G.: Naive boundary strata and nilpotent orbits. Ann. Inst. Fourier 64(6), 2659–2714 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  39. Kondo, S.: The moduli space of curves of genus 4 and Deligne-Mostow’s complex reflection groups. Algebr. Geom. (2000). Azumino (Hotaka). Adv. Stud. Pure Math. 36, 383–400 (2002). The Mathematical Society of Japan, Tokyo

    Google Scholar 

  40. Laporte, G., Walcher, J.: Monodromy of an inhomogeneous Picard-Fuchs equation. SIGMA 8, 056, 10 (2012)

    Google Scholar 

  41. Lefschetz, S.: l’Analysis situs et la géometrié algébrique. Gauthier-Villars, Paris (1924)

    Google Scholar 

  42. Movasati, H.: Modular-type functions attached to mirror quintic Calabi-Yau varieties (2012, preprint). arXiv:1111.0357

    Google Scholar 

  43. Murty, V.K.: Exceptional Hodge classes on certain abelian varieties. Math. Ann. 268, 197–206 (1984)

    Article  MathSciNet  MATH  Google Scholar 

  44. Patrikis, S.: Mumford-Tate groups of polarizable Hodge structures (2013, preprint). arXiv:1302.1803

    Google Scholar 

  45. Peters, C., Steenbrink, J.: Mixed Hodge Structures. Ergebnisse der Mathematik Ser. 3, vol. 52. Springer, Berlin (2008)

    Google Scholar 

  46. Robles, C.: Schubert varieties as variations of Hodge structure (2012, preprint). arXiv:1208.5453, to appear in Selecta Math

    Google Scholar 

  47. Saito, M.: Hausdorff property of the Zucker extension at the monodromy invariant subspace (2008, preprint). arXiv:0803.2771

    Google Scholar 

  48. Schmid, W.: Variation of Hodge structure: the singularities of the period mapping. Invent. Math. 22, 211–319 (1973)

    Article  MathSciNet  MATH  Google Scholar 

  49. Schneider, T.: Einführung in die transzendenten Zahlen (German). Springer, Berlin (1957)

    Book  Google Scholar 

  50. Schnell, C.: Two observations about normal functions. Clay Math. Proc. 9, 75–79 (2010)

    MathSciNet  Google Scholar 

  51. Schnell, C.: Complex-analytic Néron models for arbitrary families of intermediate Jacobians. Invent. Math. 188(1), 1–81 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  52. Shiga, H.: On the representation of the Picard modular function by θ constants I-II. Publ. RIMS Kyoto Univ. 24, 311–360 (1988)

    Article  MathSciNet  MATH  Google Scholar 

  53. Shiga, H., Wolfart, J.: Criteria for complex multiplication and transcendence properties of automorphic functions. J. Reine Angew. Math. 463, 1–25 (1995)

    MathSciNet  MATH  Google Scholar 

  54. Sommese, A.: Criteria for quasi-projectivity. Math. Ann. 217, 247–256 (1975)

    Article  MathSciNet  MATH  Google Scholar 

  55. Usui, S.: Generic Torelli theorem for quintic-mirror family. Proc. Jpn. Acad. Ser. A Math. Sci. 84(8), 143–146 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  56. Voisin, C.: Hodge loci and absolute Hodge classes. Compos. Math. 143(4), 945–958 (2007)

    MathSciNet  MATH  Google Scholar 

  57. Wüstholz, G.: Algebraic groups, Hodge theory, and transcendence. Proc. ICM 1, 476–483 (1986)

    Google Scholar 

  58. Zucker, S.: The Hodge conjecture for cubic fourfolds. Compositio Math. 34(2), 199–209 (1977)

    MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

The author acknowledges partial support under the aegis of NSF Grant DMS-1068974. It is his pleasure to thank C. Robles and the referee for their constructive comments on the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Matt Kerr .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer Science+Business Media New York

About this chapter

Cite this chapter

Kerr, M. (2015). Algebraic and Arithmetic Properties of Period Maps. In: Laza, R., Schütt, M., Yui, N. (eds) Calabi-Yau Varieties: Arithmetic, Geometry and Physics. Fields Institute Monographs, vol 34. Springer, New York, NY. https://doi.org/10.1007/978-1-4939-2830-9_6

Download citation

Publish with us

Policies and ethics