Skip to main content

A Systems Toxicology Approach to Investigating the Cardiovascular Effects of Cigarette Smoke and Environmental Pollutants in ApoE-Deficient Mice

  • Protocol
Book cover Computational Systems Toxicology

Part of the book series: Methods in Pharmacology and Toxicology ((MIPT))

  • 899 Accesses

Abstract

Epidemiological evidence indicates that exposure to combustion-derived particles is linked to an increased risk of cardiovascular disease. Despite this strong association, there remains a lack of data that can be used to identify the molecular mechanisms through which exposure to particulate matter (PM) leads to adverse cardiovascular events. The biological complexity of the responses generated by exposure to PM is compounded by the inherent multidimensional nature of the chemical mixtures associated with PM emitted from a range of sources, including diesel and gasoline exhausts, cigarette smoke, and ambient particles. The current challenges in this field of toxicology include the development and adoption of standardized in vitro and in vivo methods for testing multiple types of PM as individual entities or as mixtures. In this chapter, we focused on studies that have been published on the effects of combustion-derived PM in the ApoE-deficient mouse, a model of atherosclerosis that has proven to be a powerful in vivo surrogate for vascular disease in humans. A number of studies have been conducted in which the effects of diesel and gasoline exhausts, cigarette smoke, and concentrated ambient particles have been investigated, however, the exposure times, routes of PM delivery, and end points used in those studies have varied widely, making it challenging to compare the results of the studies. Despite these limitations, a few key findings on the development of vascular lesions in ApoE −/− mice can consistently be extracted from the published data. Future efforts should be aimed at systematizing the experimental designs and functional and molecular end points in studies using ApoE −/− mice so that the effects of different sizes and types of PM can be compared reliably. Functional end points and molecular data generated using ‘omics’ approaches, in which the transcriptome, lipidome, and proteome of ApoE −/− mice exposed to a diverse range of PM sources are examined, will be invaluable components in a systems biology approach to achieving a full understanding of the underlying biology of exposure to combustion-derived PM.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Peters A (2005) Particulate matter and heart disease: evidence from epidemiological studies. Toxicol Appl Pharmacol 207(2 Suppl):477–482. doi:10.1016/j.taap.2005.04.030

    Article  PubMed  Google Scholar 

  2. Moghadasian MH, McManus BM, Nguyen LB et al (2001) Pathophysiology of apolipoprotein E deficiency in mice: relevance to apo E-related disorders in humans. FASEB J 15(14):2623–2630. doi:10.1096/fj.01-0463com

    Article  CAS  PubMed  Google Scholar 

  3. Ghiselli G, Schaefer EJ, Gascon P et al (1981) Type III hyperlipoproteinemia associated with apolipoprotein E deficiency. Science 214(4526):1239–1241

    Article  CAS  PubMed  Google Scholar 

  4. Zannis VI, Breslow JL (1980) Characterization of a unique human apolipoprotein E variant associated with type III hyperlipoproteinemia. J Biol Chem 255(5):1759–1762

    CAS  PubMed  Google Scholar 

  5. Plump AS, Breslow JL (1995) Apolipoprotein E and the apolipoprotein E-deficient mouse. Annu Rev Nutr 15:495–518. doi:10.1146/annurev.nu.15.070195.002431

    Article  CAS  PubMed  Google Scholar 

  6. Arunachalam G, Sundar IK, Hwang JW et al (2010) Emphysema is associated with increased inflammation in lungs of atherosclerosis-prone mice by cigarette smoke: implications in comorbidities of COPD. J Inflamm 7:34. doi:10.1186/1476-9255-7-34

    Article  Google Scholar 

  7. Plump AS, Smith JD, Hayek T et al (1992) Severe hypercholesterolemia and atherosclerosis in apolipoprotein E-deficient mice created by homologous recombination in ES cells. Cell 71(2):343–353

    Article  CAS  PubMed  Google Scholar 

  8. Puri R, Duong M, Uno K et al (2012) The emerging role of plasma lipidomics in cardiovascular drug discovery. Expert Opin Drug Discov 7(1):63–72. doi:10.1517/17460441.2012.644041

    Article  CAS  PubMed  Google Scholar 

  9. Stahlman M, Ejsing CS, Tarasov K et al (2009) High-throughput shotgun lipidomics by quadrupole time-of-flight mass spectrometry. J Chromatogr B Analyt Technol Biomed Life Sci 877(26):2664–2672. doi:10.1016/j.jchromb.2009.02.037

    Article  CAS  PubMed  Google Scholar 

  10. Vihervaara T, Suoniemi M, Laaksonen R (2013) Lipidomics in drug discovery. Drug Discov Today. doi:10.1016/j.drudis.2013.09.008

    PubMed  Google Scholar 

  11. Didangelos A, Stegemann C, Mayr M (2012) The -omics era: proteomics and lipidomics in vascular research. Atherosclerosis 221(1):12–17. doi:10.1016/j.atherosclerosis.2011.09.043

    Article  CAS  PubMed  Google Scholar 

  12. Ekroos K, Janis M, Tarasov K et al (2010) Lipidomics: a tool for studies of atherosclerosis. Curr Atheroscler Rep 12(4):273–281. doi:10.1007/s11883-010-0110-y

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  13. Stegemann C, Drozdov I, Shalhoub J et al (2011) Comparative lipidomics profiling of human atherosclerotic plaques. Circ Cardiovasc Genet 4(3):232–242. doi:10.1161/CIRCGENETICS.110.959098

    Article  CAS  PubMed  Google Scholar 

  14. Boue S, De Leon H, Schlage WK et al (2013) Cigarette smoke induces molecular responses in respiratory tissues of ApoE(-/-) mice that are progressively deactivated upon cessation. Toxicology 314(1):112–124. doi:10.1016/j.tox.2013.09.013

    Article  CAS  PubMed  Google Scholar 

  15. Boue S, Tarasov K, Janis M et al (2012) Modulation of atherogenic lipidome by cigarette smoke in apolipoprotein E-deficient mice. Atherosclerosis 225(2):328–334. doi:10.1016/j.atherosclerosis.2012.09.032

    Article  CAS  PubMed  Google Scholar 

  16. Lietz M, Berges A, Lebrun S et al (2013) Cigarette-smoke-induced atherogenic lipid profiles in plasma and vascular tissue of apolipoprotein E-deficient mice are attenuated by smoking cessation. Atherosclerosis 229(1):86–93. doi:10.1016/j.atherosclerosis.2013.03.036

    Article  CAS  PubMed  Google Scholar 

  17. De Leon H, Boue S, Schlage WK et al (2014) A vascular biology network model focused on inflammatory processes to investigate atherogenesis and plaque instability. J Transl Med 12(1):185. doi:10.1186/1479-5876-12-185

    Article  PubMed Central  PubMed  Google Scholar 

  18. Seilkop SK, Campen MJ, Lund AK et al (2012) Identification of chemical components of combustion emissions that affect pro-atherosclerotic vascular responses in mice. Inhal Toxicol 24(5):270–287. doi:10.3109/08958378.2012.667455

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  19. Hoffmann B, Moebus S, Mohlenkamp S et al (2007) Residential exposure to traffic is associated with coronary atherosclerosis. Circulation 116(5):489–496. doi:10.1161/CIRCULATIONAHA.107.693622

    Article  CAS  PubMed  Google Scholar 

  20. Peters A, von Klot S, Heier M et al (2004) Exposure to traffic and the onset of myocardial infarction. N Engl J Med 351(17):1721–1730. doi:10.1056/NEJMoa040203

    Article  CAS  PubMed  Google Scholar 

  21. Campen MJ, Lund AK, Knuckles TL et al (2010) Inhaled diesel emissions alter atherosclerotic plaque composition in ApoE(-/-) mice. Toxicol Appl Pharmacol 242(3):310–317. doi:10.1016/j.taap.2009.10.021

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  22. Lund AK, Knuckles TL, Obot Akata C et al (2007) Gasoline exhaust emissions induce vascular remodeling pathways involved in atherosclerosis. Toxicol Sci 95(2):485–494. doi:10.1093/toxsci/kfl145

    Article  CAS  PubMed  Google Scholar 

  23. Lund AK, Lucero J, Harman M et al (2011) The oxidized low-density lipoprotein receptor mediates vascular effects of inhaled vehicle emissions. Am J Respir Crit Care Med 184(1):82–91. doi:10.1164/rccm.201012-1967OC

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  24. Nurkiewicz TR, Porter DW, Hubbs AF et al (2011) Pulmonary particulate matter and systemic microvascular dysfunction. Res Rep Health Eff Inst 164:3–48

    PubMed  Google Scholar 

  25. Campen MJ, Lund AK, Doyle-Eisele ML et al (2010) A comparison of vascular effects from complex and individual air pollutants indicates a role for monoxide gases and volatile hydrocarbons. Environ Health Perspect 118(7):921–927. doi:10.1289/ehp.0901207

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  26. Cassee FR, Campbell A, Boere AJ et al (2012) The biological effects of subacute inhalation of diesel exhaust following addition of cerium oxide nanoparticles in atherosclerosis-prone mice. Environ Res 115:1–10. doi:10.1016/j.envres.2012.03.004

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  27. Folkmann JK, Risom L, Hansen CS et al (2007) Oxidatively damaged DNA and inflammation in the liver of dyslipidemic ApoE−/− mice exposed to diesel exhaust particles. Toxicology 237(1-3):134–144. doi:10.1016/j.tox.2007.05.009

    Article  CAS  PubMed  Google Scholar 

  28. Maresh JG, Campen MJ, Reed MD et al (2011) Hypercholesterolemia potentiates aortic endothelial response to inhaled diesel exhaust. Inhal Toxicol 23(1):1–10. doi:10.3109/08958378.2010.535572

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  29. Miller MR, Borthwick SJ, Shaw CA et al (2009) Direct impairment of vascular function by diesel exhaust particulate through reduced bioavailability of endothelium-derived nitric oxide induced by superoxide free radicals. Environ Health Perspect 117(4):611–616. doi:10.1289/ehp.0800235

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  30. Poss J, Lorenz D, Werner C et al (2013) Diesel exhaust particles impair endothelial progenitor cells, compromise endothelial integrity, reduce neoangiogenesis, and increase atherogenesis in mice. Cardiovasc Toxicol 13(3):290–300. doi:10.1007/s12012-013-9208-0

    Article  PubMed  Google Scholar 

  31. Campen MJ, Babu NS, Helms GA et al (2005) Nonparticulate components of diesel exhaust promote constriction in coronary arteries from ApoE−/− mice. Toxicol Sci 88(1):95–102. doi:10.1093/toxsci/kfi283

    Article  CAS  PubMed  Google Scholar 

  32. Miller MR, McLean SG, Duffin R et al (2013) Diesel exhaust particulate increases the size and complexity of lesions in atherosclerotic mice. Part Fibre Toxicol 10:61. doi:10.1186/1743-8977-10-61

    Article  PubMed Central  PubMed  Google Scholar 

  33. Lippmann M (2014) Toxicological and epidemiological studies on effects of airborne fibers: coherence and pubic health implications. Crit Rev Toxicol 44(8):643–695. doi:10.3109/10408444.2014.928266

    Article  CAS  PubMed  Google Scholar 

  34. Lee BJ, Kim B, Lee K (2014) Air pollution exposure and cardiovascular disease. Toxicol Res 30(2):71–75. doi:10.5487/TR.2014.30.2.071

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  35. Grahame TJ, Klemm R, Schlesinger RB (2014) Public health and components of particulate matter: the changing assessment of black carbon. J Air Waste Manage Assoc 64(6):620–660

    Article  CAS  Google Scholar 

  36. Grunig G, Marsh LM, Esmaeil N et al (2014) Perspective: ambient air pollution: inflammatory response and effects on the lung's vasculature. Pulm Circ 4(1):25–35. doi:10.1086/674902

    Article  PubMed Central  PubMed  Google Scholar 

  37. Wan Q, Cui X, Shao J et al (2014) Beijing ambient particle exposure accelerates atherosclerosis in ApoE knockout mice by upregulating visfatin expression. Cell Stress Chaperones. doi:10.1007/s12192-014-0499-2

    PubMed Central  PubMed  Google Scholar 

  38. Chen LC, Nadziejko C (2005) Effects of subchronic exposures to concentrated ambient particles (CAPs) in mice. V. CAPs exacerbate aortic plaque development in hyperlipidemic mice. Inhal Toxicol 17(4-5):217–224. doi:10.1080/08958370590912815

    Article  CAS  PubMed  Google Scholar 

  39. Lippmann M, Gordon T, Chen LC (2005) Effects of subchronic exposures to concentrated ambient particles in mice. IX. Integral assessment and human health implications of subchronic exposures of mice to CAPs. Inhal Toxicol 17(4-5):255–261. doi:10.1080/08958370590912941

    Article  CAS  PubMed  Google Scholar 

  40. Lippmann M, Hwang JS, Maciejczyk P et al (2005) PM source apportionment for short-term cardiac function changes in ApoE−/− mice. Environ Health Perspect 113(11):1575–1579

    Article  PubMed Central  PubMed  Google Scholar 

  41. Gairola CG, Drawdy ML, Block AE et al (2001) Sidestream cigarette smoke accelerates atherogenesis in apolipoprotein E−/− mice. Atherosclerosis 156(1):49–55

    Article  CAS  PubMed  Google Scholar 

  42. Suwa T, Hogg JC, Quinlan KB et al (2002) Particulate air pollution induces progression of atherosclerosis. J Am Coll Cardiol 39(6):935–942

    Article  CAS  PubMed  Google Scholar 

  43. Sun Q, Wang A, Jin X et al (2005) Long-term air pollution exposure and acceleration of atherosclerosis and vascular inflammation in an animal model. JAMA 294(23):3003–3010. doi:10.1001/jama.294.23.3003

    Article  CAS  PubMed  Google Scholar 

  44. Araujo JA, Barajas B, Kleinman M et al (2008) Ambient particulate pollutants in the ultrafine range promote early atherosclerosis and systemic oxidative stress. Circ Res 102(5):589–596. doi:10.1161/CIRCRESAHA.107.164970

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  45. Li N, Nel AE (2006) Role of the Nrf2-mediated signaling pathway as a negative regulator of inflammation: implications for the impact of particulate pollutants on asthma. Antioxid Redox Signal 8(1-2):88–98. doi:10.1089/ars.2006.8.88

    Article  CAS  PubMed  Google Scholar 

  46. Farokhzad OC, Langer R (2009) Impact of nanotechnology on drug delivery. ACS Nano 3(1):16–20. doi:10.1021/nn900002m

    Article  CAS  PubMed  Google Scholar 

  47. Kagan VE, Bayir H, Shvedova AA (2005) Nanomedicine and nanotoxicology: two sides of the same coin. Nanomedicine 1(4):313–316. doi:10.1016/j.nano.2005.10.003

    Article  CAS  PubMed  Google Scholar 

  48. Shvedova AA, Kisin ER, Porter D et al (2009) Mechanisms of pulmonary toxicity and medical applications of carbon nanotubes: two faces of Janus? Pharmacol Ther 121(2):192–204. doi:10.1016/j.pharmthera.2008.10.009

    Article  CAS  PubMed  Google Scholar 

  49. Oberdorster G, Maynard A, Donaldson K et al (2005) Principles for characterizing the potential human health effects from exposure to nanomaterials: elements of a screening strategy. Part Fibre Toxicol 2:8. doi:10.1186/1743-8977-2-8

    Article  PubMed Central  PubMed  Google Scholar 

  50. Lam CW, James JT, McCluskey R et al (2004) Pulmonary toxicity of single-wall carbon nanotubes in mice 7 and 90 days after intratracheal instillation. Toxicol Sci 77(1):126–134. doi:10.1093/toxsci/kfg243

    Article  CAS  PubMed  Google Scholar 

  51. Muller J, Huaux F, Moreau N et al (2005) Respiratory toxicity of multi-wall carbon nanotubes. Toxicol Appl Pharmacol 207(3):221–231. doi:10.1016/j.taap.2005.01.008

    Article  CAS  PubMed  Google Scholar 

  52. Shvedova AA, Kisin ER, Mercer R et al (2005) Unusual inflammatory and fibrogenic pulmonary responses to single-walled carbon nanotubes in mice. Am J Physiol Lung Cell Mol Physiol 289(5):L698–L708. doi:10.1152/ajplung.00084.2005

    Article  CAS  PubMed  Google Scholar 

  53. Ge C, Meng L, Xu L et al (2012) Acute pulmonary and moderate cardiovascular responses of spontaneously hypertensive rats after exposure to single-wall carbon nanotubes. Nanotoxicology 6(5):526–542. doi:10.3109/17435390.2011.587905

    Article  CAS  PubMed  Google Scholar 

  54. Radomski A, Jurasz P, Alonso-Escolano D et al (2005) Nanoparticle-induced platelet aggregation and vascular thrombosis. Br J Pharmacol 146(6):882–893. doi:10.1038/sj.bjp.0706386

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  55. Stapleton PA, Minarchick VC, Cumpston AM et al (2012) Impairment of coronary arteriolar endothelium-dependent dilation after multi-walled carbon nanotube inhalation: a time-course study. Int J Mol Sci 13(11):13781–13803. doi:10.3390/ijms131113781

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  56. Li Z, Hulderman T, Salmen R et al (2007) Cardiovascular effects of pulmonary exposure to single-wall carbon nanotubes. Environ Health Perspect 115(3):377–382. doi:10.1289/ehp.9688

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  57. Cao Y, Jacobsen NR, Danielsen PH et al (2014) Vascular effects of multiwalled carbon nanotubes in dyslipidemic ApoE−/− mice and cultured endothelial cells. Toxicol Sci 138(1):104–116. doi:10.1093/toxsci/kft328

    Article  CAS  PubMed  Google Scholar 

  58. Mercer RR, Scabilloni JF, Hubbs AF et al (2013) Extrapulmonary transport of MWCNT following inhalation exposure. Part Fibre Toxicol 10(1):38. doi:10.1186/1743-8977-10-38

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  59. Jacobsen NR, Moller P, Jensen KA et al (2009) Lung inflammation and genotoxicity following pulmonary exposure to nanoparticles in ApoE−/− mice. Part Fibre Toxicol 6:2. doi:10.1186/1743-8977-6-2

    Article  PubMed Central  PubMed  Google Scholar 

  60. Vesterdal LK, Folkmann JK, Jacobsen NR et al (2009) Modest vasomotor dysfunction induced by low doses of C60 fullerenes in apolipoprotein E knockout mice with different degree of atherosclerosis. Part Fibre Toxicol 6:5. doi:10.1186/1743-8977-6-5

    Article  PubMed Central  PubMed  Google Scholar 

  61. Benowitz NL, Fitzgerald GA, Wilson M et al (1993) Nicotine effects on eicosanoid formation and hemostatic function: comparison of transdermal nicotine and cigarette smoking. J Am Coll Cardiol 22(4):1159–1167

    Article  CAS  PubMed  Google Scholar 

  62. Miller GJ, Bauer KA, Cooper JA et al (1998) Activation of the coagulant pathway in cigarette smokers. Thromb Haemost 79(3):549–553

    CAS  PubMed  Google Scholar 

  63. Matetzky S, Tani S, Kangavari S et al (2000) Smoking increases tissue factor expression in atherosclerotic plaques: implications for plaque thrombogenicity. Circulation 102(6):602–604

    Article  CAS  PubMed  Google Scholar 

  64. von Holt K, Lebrun S, Stinn W et al (2009) Progression of atherosclerosis in the Apo E−/− model: 12-month exposure to cigarette mainstream smoke combined with high-cholesterol/fat diet. Atherosclerosis 205(1):135–143. doi:10.1016/j.atherosclerosis.2008.11.031

    Article  Google Scholar 

  65. Stolle K, Berges A, Lietz M et al (2010) Cigarette smoke enhances abdominal aortic aneurysm formation in angiotensin II-treated apolipoprotein E-deficient mice. Toxicol Lett 199(3):403–409. doi:10.1016/j.toxlet.2010.10.005

    Article  CAS  PubMed  Google Scholar 

  66. Kunitomo M, Yamaguchi Y, Kagota S et al (2009) Biochemical evidence of atherosclerosis progression mediated by increased oxidative stress in apolipoprotein E-deficient spontaneously hyperlipidemic mice exposed to chronic cigarette smoke. J Pharmacol Sci 110(3):354–361

    Article  CAS  PubMed  Google Scholar 

  67. Jousilahti P, Patja K, Salomaa V (2002) Environmental tobacco smoke and the risk of cardiovascular disease. Scand J Work Environ Health 28(Suppl 2):41–51

    CAS  PubMed  Google Scholar 

  68. Munteanu I, Mihaltan FD (2014) Second-hand smoking and CV risk. Curr Treat Options in cardiovasc Med 16(12):348. doi:10.1007/s11936-014-0348-8

    Article  Google Scholar 

  69. Javed F, Bashir Ahmed H, Romanos GE (2014) Association between environmental tobacco smoke and periodontal disease: a systematic review. Environ Res 133:117–122. doi:10.1016/j.envres.2014.05.008

    Article  CAS  PubMed  Google Scholar 

  70. Nishino Y, Tsuji I, Tanaka H et al (2014) Stroke mortality associated with environmental tobacco smoke among never-smoking Japanese women: a prospective cohort study. Prev Med 67:41–45. doi:10.1016/j.ypmed.2014.06.029

    Article  PubMed  Google Scholar 

  71. Han SG, Howatt DA, Daugherty A et al (2012) Atherogenic and pulmonary responses of ApoE- and LDL receptor-deficient mice to sidestream cigarette smoke. Toxicology 299(2-3):133–138. doi:10.1016/j.tox.2012.05.015

    Article  CAS  PubMed  Google Scholar 

  72. Dong A, Caicedo J, Han SG et al (2010) Enhanced platelet reactivity and thrombosis in Apoe−/− mice exposed to cigarette smoke is attenuated by P2Y12 antagonism. Thromb Res 126(4):e312–e317. doi:10.1016/j.thromres.2010.03.010

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  73. Harrison CM, Pompilius M, Pinkerton KE et al (2011) Mitochondrial oxidative stress significantly influences atherogenic risk and cytokine-induced oxidant production. Environ Health Perspect 119(5):676–681. doi:10.1289/ehp.1002857

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  74. Brook RD, Brook JR, Urch B et al (2002) Inhalation of fine particulate air pollution and ozone causes acute arterial vasoconstriction in healthy adults. Circulation 105(13):1534–1536

    Article  CAS  PubMed  Google Scholar 

  75. LeBlanc AJ, Moseley AM, Chen BT et al (2010) Nanoparticle inhalation impairs coronary microvascular reactivity via a local reactive oxygen species-dependent mechanism. Cardiovasc Toxicol 10(1):27–36. doi:10.1007/s12012-009-9060-4

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  76. Mills NL, Miller MR, Lucking AJ et al (2011) Combustion-derived nanoparticulate induces the adverse vascular effects of diesel exhaust inhalation. Eur Heart J 32(21):2660–2671. doi:10.1093/eurheartj/ehr195

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  77. Barlow PG, Clouter-Baker A, Donaldson K et al (2005) Carbon black nanoparticles induce type II epithelial cells to release chemotaxins for alveolar macrophages. Part Fibre Toxicol 2:11. doi:10.1186/1743-8977-2-11

    Article  PubMed Central  PubMed  Google Scholar 

  78. Mills NL, Robinson SD, Fokkens PH et al (2008) Exposure to concentrated ambient particles does not affect vascular function in patients with coronary heart disease. Environ Health Perspect 116(6):709–715. doi:10.1289/ehp.11016

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  79. Campen M, Robertson S, Lund A et al (2014) Engine exhaust particulate and gas phase contributions to vascular toxicity. Inhal Toxicol 26(6):353–360. doi:10.3109/08958378.2014.897776

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  80. Kreyling WG, Semmler-Behnke M, Seitz J et al (2009) Size dependence of the translocation of inhaled iridium and carbon nanoparticle aggregates from the lung of rats to the blood and secondary target organs. Inhal Toxicol 21(Suppl 1):55–60. doi:10.1080/08958370902942517

    Article  CAS  PubMed  Google Scholar 

  81. Oberdorster G, Sharp Z, Atudorei V et al (2004) Translocation of inhaled ultrafine particles to the brain. Inhal Toxicol 16(6-7):437–445. doi:10.1080/08958370490439597

    Article  CAS  PubMed  Google Scholar 

  82. Nemmar A, Vanbilloen H, Hoylaerts MF et al (2001) Passage of intratracheally instilled ultrafine particles from the lung into the systemic circulation in hamster. Am J Respir Crit Care Med 164(9):1665–1668. doi:10.1164/ajrccm.164.9.2101036

    Article  CAS  PubMed  Google Scholar 

  83. Shimada A, Kawamura N, Okajima M et al (2006) Translocation pathway of the intratracheally instilled ultrafine particles from the lung into the blood circulation in the mouse. Toxicol Pathol 34(7):949–957. doi:10.1080/01926230601080502

    Article  PubMed  Google Scholar 

  84. Bai N, van Eeden SF (2013) Systemic and vascular effects of circulating diesel exhaust particulate matter. Inhal Toxicol 25(13):725–734. doi:10.3109/08958378.2013.844749

    Article  CAS  PubMed  Google Scholar 

  85. Hansen CS, Sheykhzade M, Moller P et al (2007) Diesel exhaust particles induce endothelial dysfunction in apoE−/− mice. Toxicol Appl Pharmacol 219(1):24–32. doi:10.1016/j.taap.2006.10.032

    Article  CAS  PubMed  Google Scholar 

  86. Oberdorster G, Sharp Z, Atudorei V et al (2002) Extrapulmonary translocation of ultrafine carbon particles following whole-body inhalation exposure of rats. J Toxicol Environ Health A 65(20):1531–1543. doi:10.1080/00984100290071658

    Article  CAS  PubMed  Google Scholar 

  87. Kim Y, Lobatto ME, Kawahara T et al (2014) Probing nanoparticle translocation across the permeable endothelium in experimental atherosclerosis. Proc Natl Acad Sci U S A 111(3):1078–1083. doi:10.1073/pnas.1322725111

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  88. Chou LY, Ming K, Chan WC (2011) Strategies for the intracellular delivery of nanoparticles. Chem Soc Rev 40(1):233–245. doi:10.1039/c0cs00003e

    Article  CAS  PubMed  Google Scholar 

  89. Petros RA, DeSimone JM (2010) Strategies in the design of nanoparticles for therapeutic applications. Nat Rev Drug Discov 9(8):615–627. doi:10.1038/nrd2591

    Article  CAS  PubMed  Google Scholar 

  90. Chen LC, Quan C, Hwang JS et al (2010) Atherosclerosis lesion progression during inhalation exposure to environmental tobacco smoke: a comparison to concentrated ambient air fine particles exposure. Inhal Toxicol 22(6):449–459. doi:10.3109/08958370903373845

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  91. Sun Q, Yue P, Kirk RI et al (2008) Ambient air particulate matter exposure and tissue factor expression in atherosclerosis. Inhal Toxicol 20(2):127–137. doi:10.1080/08958370701821482

    Article  PubMed  Google Scholar 

  92. De Leon H, Boue S, Peitsch MC et al (2013) Modulation of the hepatic lipidome and transcriptome of Apoe−/− mice in response to smoking cessation. J Liver 2:132. doi:10.4172/2167-0889.1000132

    Google Scholar 

  93. Jove M, Ayala V, Ramirez-Nunez O et al (2013) Lipidomic and metabolomic analyses reveal potential plasma biomarkers of early atheromatous plaque formation in hamsters. Cardiovasc Res 97(4):642–652. doi:10.1093/cvr/cvs368

    Article  CAS  PubMed  Google Scholar 

  94. Vasquez EC, Peotta VA, Meyrelles SS (2012) Cardiovascular autonomic imbalance and baroreflex dysfunction in the apolipoprotein E-deficient mouse. Cell Physiol Biochem 29(5–6):635–646. doi:10.1159/000277623

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Héctor De León .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer Science+Business Media New York

About this protocol

Cite this protocol

De León, H., Boue, S., Peitsch, M.C., Hoeng, J. (2015). A Systems Toxicology Approach to Investigating the Cardiovascular Effects of Cigarette Smoke and Environmental Pollutants in ApoE-Deficient Mice. In: Hoeng, J., Peitsch, M. (eds) Computational Systems Toxicology. Methods in Pharmacology and Toxicology. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-2778-4_14

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-2778-4_14

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-2777-7

  • Online ISBN: 978-1-4939-2778-4

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics