Skip to main content

Structure of the HCV Internal Ribosome Entry Site Subdomain IIa RNA in Complex with a Viral Translation Inhibitor

  • Protocol
Nucleic Acid Crystallography

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1320))

Abstract

The internal ribosome entry site (IRES) in the 5′ untranslated region (UTR) of the hepatitis C virus (HCV) RNA genome is responsible for initiation of viral protein synthesis. The IRES RNA contains autonomously folding domains that are potential targets for antiviral translation inhibitors. Here, we describe the experimental crystal structure determination of the IRES subdomain IIa in complex with a previously discovered benzimidazole translation inhibitor. The structure of an inhibitor complex of the highly conserved IRES subdomain IIa holds promise for structure-based design of new anti-HCV drugs.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Davis DR, Seth PP (2011) Therapeutic targeting of HCV internal ribosomal entry site RNA. Antivir Chem Chemother 21:117–128

    Article  CAS  PubMed  Google Scholar 

  2. Kieft JS, Grech A, Adams P, Doudna JA (2001) Mechanisms of internal ribosome entry in translation initiation. Cold Spring Harb Symp Quant Biol 66:277–283

    Article  CAS  PubMed  Google Scholar 

  3. Lukavsky PJ, Kim I, Otto GA, Puglisi JD (2003) Structure of HCV IRES domain II determined by NMR. Nat Struct Biol 10:1033–1038

    Article  CAS  PubMed  Google Scholar 

  4. Dibrov SM, Johnston-Cox H, Weng YH, Hermann T (2007) Functional architecture of HCV IRES domain II stabilized by divalent metal ions in the crystal and in solution. Angew Chem Int Ed Engl 46:226–229

    Article  CAS  PubMed  Google Scholar 

  5. Seth PP, Miyaji A, Jefferson EA, Sannes-Lowery KA, Osgood SA, Propp SS, Ranken R, Massire C, Sampath R, Ecker DJ, Swayze EE, Griffey RH (2005) SAR by MS: discovery of a new class of RNA-binding small molecules for the hepatitis C virus: internal ribosome entry site IIA subdomain. J Med Chem 48:7099–7102

    Article  CAS  PubMed  Google Scholar 

  6. Parsons J, Castaldi MP, Dutta S, Dibrov SM, Wyles DL, Hermann T (2009) Conformational inhibition of the hepatitis C virus internal ribosome entry site RNA. Nat Chem Biol 5:823–825

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  7. Dibrov SM, Ding K, Brunn ND, Parker MA, Bergdahl BM, Wyles DL, Hermann T (2012) Structure of a hepatitis C virus RNA domain in complex with a translation inhibitor reveals a binding mode reminiscent of riboswitches. Proc Natl Acad Sci U S A 109:5223–5228

    Google Scholar 

  8. Parker MA, Satkiewicz E, Hermann T, Bergdahl BM (2011) An efficient new route to dihydropyranobenzimidazole inhibitors of HCV replication. Molecules 16:281–290

    Article  CAS  Google Scholar 

  9. Otwinowski Z, Minor W (1997) Processing of X-ray diffraction data collected in oscillation mode. Methods Enzymol 276:307–326

    Article  CAS  Google Scholar 

  10. Adams PD, Afonine PV, Bunkoczi G, Chen VB, Davis IW, Echols N, Headd JJ, Hung LW, Kapral GJ, Grosse-Kunstleve RW, McCoy AJ, Moriarty NW, Oeffner R, Read RJ, Richardson DC, Richardson JS, Terwilliger TC, Zwart PH (2010) PHENIX: a comprehensive Python-based system for macromolecular structure solution. Acta Cryst D 66:213–221

    Article  CAS  Google Scholar 

  11. Adams PD, Afonine PV, Bunkoczi G, Chen VB, Echols N, Headd JJ, Hung LW, Jain S, Kapral GJ, Grosse Kunstleve RW, McCoy AJ, Moriarty NW, Oeffner RD, Read RJ, Richardson DC, Richardson JS, Terwilliger TC, Zwart PH (2011) The Phenix software for automated determination of macromolecular structures. Methods 55:94–106

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  12. Collaborative Computational Project, Number 4 (1994) The CCP4 suite: programs for protein crystallography. Acta Cryst D 50:760–763

    Article  Google Scholar 

  13. Murshudov GN, Vagin AA, Dodson EJ (1997) Refinement of macromolecular structures by the maximum-likelihood method. Acta Cryst D 53:240–255

    Article  CAS  Google Scholar 

Download references

Acknowledgement

This work was supported by the National Institutes of Health, grant AI072012.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Thomas Hermann .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer Science+Business Media New York

About this protocol

Cite this protocol

Dibrov, S.M., Hermann, T. (2016). Structure of the HCV Internal Ribosome Entry Site Subdomain IIa RNA in Complex with a Viral Translation Inhibitor. In: Ennifar, E. (eds) Nucleic Acid Crystallography. Methods in Molecular Biology, vol 1320. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-2763-0_21

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-2763-0_21

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-2762-3

  • Online ISBN: 978-1-4939-2763-0

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics