Skip to main content

Evaluation of Quenching and Extraction Methods for Nucleotide/Nucleotide Sugar Analysis

  • Protocol
Glyco-Engineering

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1321))

Abstract

Nucleotide sugars are the donor substrates of glycosyltransferases and their availability is known to have an impact on the glycosylation of recombinant proteins including monoclonal antibodies. In addition, the intracellular concentration levels of these metabolites can provide information about the physiological/energetic state of the cell. Therefore, the ability to qualitatively and quantitatively determine the intracellular nucleotides and nucleotide sugars can give valuable insight into the metabolism associated with the glycosylation processes in cells. However, in order to be able to perform a consistent and reliable time specific analysis of these metabolites during a cell culture the metabolism of the cell needs to be stopped immediately at the point of sampling and an efficient extraction needs to be performed. Once the nucleotides and nucleotide sugars are extracted from the cell sample an efficient HPLC method is needed to separate all or most of the metabolites of interest to allow for their identification and quantification. Here, we describe an optimized method for the analysis of the intracellular nucleotide/nucleotide sugar pool in CHO suspension cells which includes protocols for quenching, extraction and HPLC analysis.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Butler M (2009) Mammalian cell lines and glycosylation: a case study. In: Walsh G (ed) Post-translational modification of protein biopharmaceuticals. Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim, pp 51–77

    Chapter  Google Scholar 

  2. Varki A, Cumming RD, Esko JD et al (2008) Essentials of glycobiology, 2nd edn. Cold Spring Harbor, New York

    Google Scholar 

  3. Durocher Y, Butler M (2009) Expression systems for therapeutic glycoprotein production. Curr Opin Biotechnol 20:700–707

    Article  CAS  PubMed  Google Scholar 

  4. Tomiya N, Ailor E, Lawrence SM et al (2001) Determination of nucleotides and sugar nucleotides involved in protein glycosylation by high-performance anion-exchange chromatography: Sugar nucleotide contents in cultured insect cells and mammalian cells. Anal Biochem 293:129–137

    Article  CAS  PubMed  Google Scholar 

  5. Nakajima K, Kitazume S, Angata T et al (2010) Simultaneous determination of nucleotide sugars with ion-pair reversed-phase HPLC. Glycobiology 20:865–871

    Article  CAS  PubMed  Google Scholar 

  6. Rijcken W, Overdijk B, Van Den Eijnden D et al (1995) The effect of increasing nucleotide-sugar concentrations on the incorporation of sugars into glycoconjugates in rat hepatocytes. Biochem J 305:865–870

    Google Scholar 

  7. Räbinä J, Mäki M, Savilahti E et al (2001) Analysis of nucleotide sugars from cell lysates by ion-pair solid-phase extraction and reversed-phase high–performance liquid chromatography. Glycoconj J 18:799–805

    Article  PubMed  Google Scholar 

  8. Kochanowski N, Blanchard F, Cacan R et al (2006) Intracellular nucleotide and nucleotide sugar contents of cultured CHO cells determined by a fast, sensitive, and high-resolution ion-pair RP-HPLC. Anal Biochem 348:243–251

    Article  CAS  PubMed  Google Scholar 

  9. Atkinson AE (1968) The energy charge of the adenylate pool as a regulatory parameter. Interaction with feedback modifiers. Biochemistry 7:4030–4034

    Article  CAS  PubMed  Google Scholar 

  10. Barnabé N, Butler M (2000) The effect of glucose and glutamine on the intracellular nucleotide pool and oxygen uptake rate of a murine hybridoma. Cytotechnology 34:47–57

    Article  PubMed Central  PubMed  Google Scholar 

  11. Barnabé N, Butler M (1998) The relationship between intracellular UDP-N-acetyl hexosamine nucleotide pools and monoclonal antibody production in a mouse hybridoma. J Biotechnol 60:67–80

    Article  PubMed  Google Scholar 

  12. Ryll T, Wagner R (1992) Intracellular ribonucleotide pools as a tool for monitoring the physiological state of in vitro cultivated mammalian cells during production processes. Biotechnol Bioeng 40:934–946

    Article  CAS  PubMed  Google Scholar 

  13. Burgener A, Coombs K, Butler M (2006) Intracellular ATP and total adenylate concentrations are critical predictors of reovirus productivity from Vero cells. Biotechnol Bioeng 94:667–679

    Article  CAS  PubMed  Google Scholar 

  14. Ritter J, Genzel Y, Reichl U (2008) Simultaneous extraction of several metabolites of energy metabolism and related substances in mammalian cells: Optimization using experimental design. Anal Biochem 373:349–369

    Article  CAS  PubMed  Google Scholar 

  15. Weibl KE, Mor J-R, Fiechter A (1974) Rapid sampling of yeast cells and automated assays of adenylate, citrate, pyruvate and glucose-6-phosphate pools. Anal Biochem 348:243–251

    Google Scholar 

  16. Grob M, O’Brien K, Jua CJ et al (2003) Optimization of cellular nucleotide extraction and sample preparation for nucleotide pool analyses using capillary electrophoresis. J Chromatogr 788:103–111

    CAS  Google Scholar 

  17. Winder CL, Dunn WB, Schuler S et al (2008) Global metabolic profiling of Escherichia coli culture: an evaluation of methods for quenching and extraction of intracellular metabolites. Anal Chem 80:2939–2948

    Article  CAS  PubMed  Google Scholar 

  18. Faijes M, Mars AE, Smid EJ (2007) Comparison of quenching and extraction methodologies for metabolome analysis of Lactobacillus plantarum. Microb Cell Fact 6:27

    Article  PubMed Central  PubMed  Google Scholar 

  19. Dietmair S, Timmins N, Gray P et al (2010) Towards quantitative metabolomics of mammalian cells: Development of a metabolite extraction protocol. Anal Biochem 404:155–164

    Article  CAS  PubMed  Google Scholar 

  20. Sellick CA, Hansen R, Maqsood AR et al (2009) Effective quenching process for physiologically valid metabolite profiling of suspension cultured mammalian cells. Anal Chem 81:174–183

    Article  CAS  PubMed  Google Scholar 

  21. del Val IJ, Kyriakopoulos S, Polizzi KM et al (2013) An optimized method for extraction and quantification of nucleotides and nucleotide sugars from mammalian cells. Anal Biochem 443(2):172–80. doi:10.1016/j.ab.2013.09.005

    Article  PubMed  Google Scholar 

  22. Sellick CA, Hansen R, Stephens GM et al (2011) Metabolite extraction from suspension-cultured mammalian cells for global metabolite profiling. Nat Protoc 6:1241–1249

    Article  CAS  PubMed  Google Scholar 

  23. Au J, Su M, Wientjes G (1989) Extraction of intracellular nucleosides and nucleotides with acetonitrile. Clin Chem 35:48–51

    CAS  PubMed  Google Scholar 

  24. Feng HT, Wong N, Wee S et al (2008) Simultaneous determination of 19 intracellular nucleotides and nucleotide sugars in Chinese Hamster ovary cells by capillary electrophoresis. J Chromatogr 870:131–134

    CAS  Google Scholar 

  25. Ryll T, Wagner R (1991) Improved ion-pair high-performance liquid chromatographic method for the quantification of a wide variety of nucleotides and sugar-nucleotides in animal cells. J Chromatogr 570:77–88

    Article  CAS  PubMed  Google Scholar 

  26. Volmer M, Northoff S, Scholz S et al (2011) Fast filtration for metabolome sampling of suspended animal cells. Biotechnol Lett 33:495–502

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer Science+Business Media New York

About this protocol

Cite this protocol

Braasch, K., Villacrés, C., Butler, M. (2015). Evaluation of Quenching and Extraction Methods for Nucleotide/Nucleotide Sugar Analysis. In: Castilho, A. (eds) Glyco-Engineering. Methods in Molecular Biology, vol 1321. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-2760-9_24

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-2760-9_24

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-2759-3

  • Online ISBN: 978-1-4939-2760-9

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics