Skip to main content

Electrochemical Glucose Biosensor Based on Glucose Oxidase Displayed on Yeast Surface

  • Protocol

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1319))

Abstract

The conventional enzyme-based biosensor requires chemical or physical immobilization of purified enzymes on electrode surface, which often results in loss of enzyme activity and/or fractions immobilized over time. It is also costly. A major advantage of yeast surface display is that it enables the direct utilization of whole cell catalysts with eukaryote-produced proteins being displayed on the cell surface, providing an economic alternative to traditional production of purified enzymes. Herein, we describe the details of the display of glucose oxidase (GOx) on yeast cell surface and its application in the development of electrochemical glucose sensor. In order to achieve a direct electrochemistry of GOx, the entire cell catalyst (yeast-GOx) was immobilized together with multiwalled carbon nanotubes on the electrode, which allowed sensitive and selective glucose detection.

This is a preview of subscription content, log in via an institution.

Buying options

Protocol
USD   49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Springer Nature is developing a new tool to find and evaluate Protocols. Learn more

References

  1. Witteveen CF, Veenhuis M, Visser J (1992) Localization of glucose oxidase and catalase activities in Aspergillus niger. Appl Environ Microbiol 58:1190–1194

    CAS  PubMed Central  PubMed  Google Scholar 

  2. Wang J (2008) Electrochemical glucose biosensors. Chem Rev 108:814–825

    Article  CAS  PubMed  Google Scholar 

  3. Newman JD, Turner APF (2005) Home blood glucose biosensors: a commercial perspective. Biosens Bioelectron 20:2435–2453

    Article  CAS  PubMed  Google Scholar 

  4. Hanefeld U, Gardossi L, Magner E (2009) Understanding enzyme immobilisation. Chem Soc Rev 38:453–468

    Article  CAS  PubMed  Google Scholar 

  5. Lee SY, Choi JH, Xu Z (2003) Microbial cell-surface display. Trends Biotechnol 21:45–52

    Article  CAS  PubMed  Google Scholar 

  6. Liang B, Li L, Mascin M et al (2012) Construction of xylose dehydrogenase displayed on the surface of bacteria using ice nucleation protein for sensitive D-xylose detection. Anal Chem 84:275–282

    Article  CAS  PubMed  Google Scholar 

  7. Liang B, Lang Q, Tang X et al (2013) Simultaneously improving stability and specificity of cell surface displayed glucose dehydrogenase mutants to construct whole-cell biocatalyst for glucose biosensor application. Bioresour Technol 147:492–498

    Article  CAS  PubMed  Google Scholar 

  8. Liang B, Li L, Tang XL et al (2013) Microbial surface display of glucose dehydrogenase for amperometric glucose biosensor. Biosens Bioelectron 45:19–24

    Article  CAS  PubMed  Google Scholar 

  9. Li L, Liang B, Shi JG et al (2012) A selective and sensitive D-xylose electrochemical biosensor based on xylose dehydrogenase displayed on the surface of bacteria and multi-walled carbon nanotubes modified electrode. Biosens Bioelectron 33:100–105

    Article  PubMed  Google Scholar 

  10. Li L, Liang B, Li F et al (2013) Co-immobilization of glucose oxidase and xylose dehydrogenase displayed whole cell on multiwalled carbon nanotube nanocomposite films modified-electrode for simultaneous voltammetric detection of D-glucose and D-xylose. Biosens Bioelectron 42:156–162

    Article  CAS  PubMed  Google Scholar 

  11. Xia L, Liang B, Li L et al (2013) Direct energy conversion from xylose using xylose dehydrogenase surface displayed bacteria based enzymatic biofuel cell. Biosens Bioelectron 44:160–163

    Article  CAS  PubMed  Google Scholar 

  12. Wang H, Lang Q, Li L et al (2013) Yeast surface displaying glucose oxidase as whole-cell biocatalyst: construction, characterization, and its electrochemical glucose sensing application. Anal Chem 85:6107–6112

    Article  CAS  PubMed  Google Scholar 

  13. Boder ET, Wittrup KD (1997) Yeast surface display for screening combinatorial polypeptide libraries. Nat Biotechnol 15:553–557

    Article  CAS  PubMed  Google Scholar 

  14. Gouda MD, Singh SA, Rao AG et al (2003) Thermal inactivation of glucose oxidase. Mechanism and stabilization using additives. J Biol Chem 278:24324–24333

    Article  CAS  PubMed  Google Scholar 

  15. Bergmeyer HU (1974) Methods of enzymatic analysis, vol I, 2nd edn. Verlag Chemie, Academic, Weinheim, New York

    Google Scholar 

Download references

Acknowledgements

This work was supported in part by National Natural Science Foundation of China (91227116, 31200982, 31200598, 21275152, and 21475144), and the Hundred-Talent-Project (No. KSCX2-YW-BR-7), the Chinese Academy of Sciences.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Aihua Liu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer Science+Business Media New York

About this protocol

Cite this protocol

Wang, H., Lang, Q., Liang, B., Liu, A. (2015). Electrochemical Glucose Biosensor Based on Glucose Oxidase Displayed on Yeast Surface. In: Liu, B. (eds) Yeast Surface Display. Methods in Molecular Biology, vol 1319. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-2748-7_13

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-2748-7_13

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-2747-0

  • Online ISBN: 978-1-4939-2748-7

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics