Skip to main content
  • 805 Accesses

Abstract

In this chapter, I will introduce the basic neurophysiological rule (BNR) to extend the explanation of the physiological origin of referent variables R, λ, and C already described for the single joint level to more global forms of referent control. These forms can be used to guide multi-muscle and multi-joint actions. One such a form—the referent arm configuration—has already been introduced in Chap. 3 to suggest that all muscles of the arm are controlled as a coherent unit. This notion is generalized to all muscles of the body by defining the referent body configuration. The introduction of this form of referent control further emphasizes that neural control levels are released from the necessity to decide which and how muscles should be activated to perform a motor action. Since the time when the concept of referent body configuration has been introduced (Feldman and Levin 1995; Feldman et al. 1998a; Lestienne et al. 2000) it has been tested and successfully applied to several human actions, including reaching, locomotion, jumping, sit-to-stand movements, dancing, and hammering in humans, and to head movements in monkeys.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Alstermark B, Isa T (2012) Circuits for skilled reaching and grasping. Annu Rev Neurosci 35:559–578

    Article  CAS  PubMed  Google Scholar 

  • Ambike S, Paclet F, Zatsiorsky VM, Latash ML (2014) Factors affecting grip force: anatomy, mechanics, and referent configurations. Exp Brain Res 232(4):1219–1231

    Article  PubMed Central  PubMed  Google Scholar 

  • Archambault PS, Mihaltchev P, Levin MF, Feldman AG (2005) Basic elements of arm postural control analyzed by unloading. Exp Brain Res 164(2):225–241

    Article  PubMed  Google Scholar 

  • Bernstein NA (1967) The co-ordination and regulation of movements. Pergamon, Oxford

    Google Scholar 

  • Feldman AG, Levin MF (1995) The origin and use of positional frames of reference in motor control. Behav Brain Sci 18(4):723–744

    Article  Google Scholar 

  • Feldman AG, Orlovsky GN (1972) The influence of different descending systems on the tonic stretch reflex in the cat. Exp Neurol 37(3):481–494

    Article  CAS  PubMed  Google Scholar 

  • Feldman AG, Archambault P, Levin MF, Ma S, Mitnitski A (1997) Multi-muscle control in hammering and pointing movements: the referent body configuration. Soc Neurosci Abstr 23(1-2)

    Google Scholar 

  • Feldman AG, Goussev V, Sangole A, Levin MF (2007) Threshold position control and the principle of minimal interaction in motor actions. In: Cisek P, Drew T, Kalaska J (eds) Computational neuroscience: theoretical insights into brain function: theoretical insights into brain function, vol 165, Progress in brain research., pp 267–281

    Chapter  Google Scholar 

  • Feldman AG, Krasovsky T, Baniña MC, Lamontagne A, Levin MF (2011) Changes in the referent body location and configuration may underlie human gait, as confirmed by findings of multi-muscle activity minimizations and phase resetting. Exp Brain Res 210(1):91–115

    Article  PubMed  Google Scholar 

  • Flanagan JR, Ostry DJ, Feldman AG (1993) Control of trajectory modifications in target-directed reaching. J Mot Behav 25(3):140–152

    Article  PubMed  Google Scholar 

  • Foisy M, Feldman AG (2006) Threshold control of arm posture and movement adaptation to load. Exp Brain Res 175(4):726–744

    Article  PubMed  Google Scholar 

  • Fujimoto M, Chou LS (2012) Dynamic balance control during sit-to-stand movement: An examination with the center of mass acceleration. J Biomech 45(3):543–548

    Article  PubMed  Google Scholar 

  • Gelfand IM, Tsetlin ML (1971) Some methods of controlling complex system. In: Gelfand IM, Gurfinkel VS, Fomin SV, Tsetlin ML (eds) Models of structural-functional organization of certain biological systems. MIT Press, Cambridge, MA, pp 329–345

    Google Scholar 

  • Georgopoulos AP (1996) On the translation of directional motor cortical commands to activation of muscles via spinal interneuronal systems. Cogn Brain Res 3(2):151–155

    Article  CAS  Google Scholar 

  • Georgopoulos AP, Kalaska JF, Caminiti R, Massey JT (1982) On the relations between the direction of two-dimensional arm movements and cell discharge in primate motor cortex. J Neurosci 2(11):1527–1537

    CAS  PubMed  Google Scholar 

  • Georgopoulos AP, Pellizzer G, Poliakov AV, Schieber MH (1999) Neural coding of finger and wrist movements. J Comput Neurosci 6(3):279–288

    Article  CAS  PubMed  Google Scholar 

  • Georgopoulos AP, Merchant H, Naselaris T, Amirikian B (2007) Mapping of the preferred direction in the motor cortex. Proc Natl Acad Sci USA 104(26):11068–11072

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Ghafouri M, Feldman AG (2001) The timing of control signals underlying fast point-to-point arm movements. Exp Brain Res 137(3–4):411–423

    CAS  PubMed  Google Scholar 

  • Hart CB, Giszter SF (2010) A neural basis for motor primitives in the spinal cord. J Neurosci 30(4):1322–1336

    Article  CAS  PubMed  Google Scholar 

  • Hirschfeld H, Thorsteinsdottir M, Olsson E (1999) Coordinated ground forces exerted by buttocks and feet are adequately programmed for weight transfer during sit-to-stand. J Neurophysiol 82(6):3021–3029

    CAS  PubMed  Google Scholar 

  • Kugler PN, Kelso JAS, Turvey MT (1980) On the concept of coordinative structures as dissipative structures: I. Theoretical lines of convergence. In: Stelmach GE, Requin J (eds) Tutorials in motor behavior. North-Holland, Amsterdam

    Google Scholar 

  • Lashley KS (1951) The problem of serial order in behavior. In: Jeffress LA (ed) Cerebral mechanisms in behavior: the Hixon symposium. Wiley, Oxford, England, pp 112–146

    Google Scholar 

  • Latash ML (2008) Synergy. Oxford University Press, New York, NY

    Book  Google Scholar 

  • Latash ML, Scholz JP, Schoner G (2007) Toward a new theory of motor synergies. Mot Control 11:276–308

    Google Scholar 

  • Lepelley MC, Thullier F, Koral J, Lestienne FG (2006) Muscle coordination in complex movements during Jeté in skilled ballet dancers. Exp Brain Res 175(2):321–331

    Article  PubMed  Google Scholar 

  • Lestienne FG, Thullier F, Archambault P, Levin MF, Feldman AG (2000) Multi-muscle control of head movements in monkeys: the referent configuration hypothesis. Neurosci Lett 283(1):65–68

    Article  CAS  PubMed  Google Scholar 

  • Matthews PBC (1959) A study of certain factors influencing the stretch reflex of the decerebrated cat. J Physiol 147(3):547–564

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Nazari MA, Perrier P, Payan Y (2013) The distributed lambda (λ) model (DLM): a 3-D finite-element muscle model based on Feldman’s λ model; Assessment of orofacial gestures. J Speech Lang Hear Res 56(6):S1909–S1923

    Article  PubMed  Google Scholar 

  • Nichols TR (1994) A biomechanical perspective on spinal mechanisms of coordinated muscular action: an architecture principle. Acta Anat (Basel) 151(1):1–13

    Article  CAS  Google Scholar 

  • Pilon JF, De Serres SJ, Feldman AG (2007) Threshold position control of arm movement with anticipatory increase in grip force. Exp Brain Res 181(1):49–67

    Article  PubMed  Google Scholar 

  • Rancourt D, Hogan N (2001) Dynamics of pushing. J Mot Behav 33(4):351–362

    Article  CAS  PubMed  Google Scholar 

  • Raptis HA, Burtet L, Forget R, Feldman AG (2010) Control of wrist position and muscle relaxation by shifting spatial frames of reference for motoneuronal recruitment: possible involvement of corticospinal pathways. J Physiol 588(9):1551–1570

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Rizzolatti G, Craighero L (2004) The mirror-neuron system. Annu Rev Neurosci 27:169–192

    Article  CAS  PubMed  Google Scholar 

  • Rosenbaum DA, Loukopoulos LD, Meulenbroek RG, Vaughan J, Engelbrecht SE (1995) Planning reaches by evaluating stored postures. Psychol Rev 102(1):28–67

    Article  CAS  PubMed  Google Scholar 

  • Sasagawa S, Ushiyama J, Masani K, Kouzaki M, Kanehisa H (2009) Balance control under different passive contributions of the ankle extensors: quiet standing on inclined surfaces. Exp Brain Res 196(4):537–544

    Article  PubMed  Google Scholar 

  • Scholz JP, Schöner G (1999) The uncontrolled manifold concept: identifying control variables for a functional task. Exp Brain Res 126(3):289–306

    Article  CAS  PubMed  Google Scholar 

  • Scott SH, Gribble PL, Graham KM, Cabel DW (2001) Dissociation between hand motion and population vectors from neural activity in motor cortex. Nature 413(6852):161–165

    Article  CAS  PubMed  Google Scholar 

  • Sergio LE, Hamel-Pâquet C, Kalaska JF (2005) Motor cortex neural correlates of output kinematics and kinetics during isometric-force and arm-reaching tasks. J Neurophysiol 94(4):2353–2378

    Article  PubMed  Google Scholar 

  • St-Onge N, Feldman AG (2004) Referent configuration of the body: a global factor in the control of multiple skeletal muscles. Exp Brain Res 155(3):291–300

    Article  PubMed  Google Scholar 

  • Todorov E, Jordan MI (2002) Optimal feedback control as a theory of motor coordination. Nat Neurosci 5(11):1226–1235

    Article  CAS  PubMed  Google Scholar 

  • Warren WH, Kay BA, Zosh WD, Duchon AP, Sahuc S (2001) Optic flow is used to control human walking. Nat Neurosci 4(2):213–216

    Article  CAS  PubMed  Google Scholar 

  • Weeks DL, Aubert MP, Feldman AG, Levin MF (1996) One-trial adaptation of movement to changes in load. J Neurophysiol 75(1):60–74

    CAS  PubMed  Google Scholar 

  • Won J, Hogan N (1995) Stability properties of human reaching movements. Exp Brain Res 107(1):125–136

    Article  CAS  PubMed  Google Scholar 

  • Yang F, Feldman AG (2010) Reach-to-grasp movement as a minimization process. Exp Brain Res 201(1):75–92

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

5.1 Electronic Supplementary Material

Below is the link to the electronic supplementary material.

Movements from sitting to full position are shown. Blue and green figures show the referent and emergent actual body configurations, respectively. Animations are reproduced with permission from Feldman et al. (2007). Copyright 2007 Elsevier Science (AVI 866 kb)

Animation 5.2

Movements from sitting to semi-standing position are shown. Blue and green figures show the referent and emergent actual body configurations, respectively. Animations are reproduced with permission from Feldman et al. (2007). Copyright 2007 Elsevier Science (AVI 976 kb)

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer Science+Business Media New York

About this chapter

Cite this chapter

Feldman, A.G. (2015). Different Forms of Referent Control. In: Referent control of action and perception. Springer, New York, NY. https://doi.org/10.1007/978-1-4939-2736-4_5

Download citation

Publish with us

Policies and ethics