Skip to main content

A Protocol for the Parallel Isolation of Intact Mitochondria from Rat Liver, Kidney, Heart, and Brain

  • Protocol
Book cover Proteomic Profiling

Abstract

Mitochondria are key organelles for cellular energy production and cell death decisions. Consequently, a plethora of conditions which are toxic to cells are known to directly attack these organelles. However, mitochondria originating from different tissues differ in their sensitivity to toxic insults. Thus, in order to predict the potential organ-specific toxicity of a given drug or pathological condition at the mitochondrial level, test settings are needed that directly compare the responses and vulnerabilities of mitochondria from different organs. As a prerequisite for such test strategies, we provide here a robust, prompt, and easy-to-follow step-by-step protocol to simultaneously isolate functional and intact mitochondria from rat liver, kidney, heart, and brain. This isolation procedure ensures mitochondrial preparations of comparable purity and reproducible quantities which can be subsequently analyzed for organ-specific mitochondrial toxicity.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Löffler G, Petrides PE (1990) Biochemie und pathobiochemie, 5th edn. Springer, Berlin

    Google Scholar 

  2. Mootha VK et al (2003) Integrated analysis of protein composition, tissue diversity, and gene regulation in mouse mitochondria. Cell 115(5):629–640

    Article  CAS  PubMed  Google Scholar 

  3. Veltri KL, Espiritu M, Singh G (1990) Distinct genomic copy number in mitochondria of different mammalian organs. J Cell Physiol 143(1):160–164

    Article  CAS  PubMed  Google Scholar 

  4. Vijayasarathy C et al (1998) Variations in the subunit content and catalytic activity of the cytochrome c oxidase complex from different tissues and different cardiac compartments. Biochim Biophys Acta 1371(1):71–82

    Article  CAS  PubMed  Google Scholar 

  5. Tahara EB, Navarete FD, Kowaltowski AJ (2009) Tissue-, substrate-, and site-specific characteristics of mitochondrial reactive oxygen species generation. Free Radic Biol Med 46(9):1283–1297

    Article  CAS  PubMed  Google Scholar 

  6. Andreyev A, Fiskum G (1999) Calcium induced release of mitochondrial cytochrome c by different mechanisms selective for brain versus liver. Cell Death Differ 6(9):825–832

    Article  CAS  PubMed  Google Scholar 

  7. Berman SB, Watkins SC, Hastings TG (2000) Quantitative biochemical and ultrastructural comparison of mitochondrial permeability transition in isolated brain and liver mitochondria: evidence for reduced sensitivity of brain mitochondria. Exp Neurol 164(2):415–425

    Article  CAS  PubMed  Google Scholar 

  8. Hogeboom GH, Schneider WC, Pallade GE (1948) Cytochemical studies of mammalian tissues; isolation of intact mitochondria from rat liver; some biochemical properties of mitochondria and submicroscopic particulate material. J Biol Chem 172(2):619–635

    CAS  PubMed  Google Scholar 

  9. Pallotti F, Lenaz G (2007) Isolation and subfractionation of mitochondria from animal cells and tissue culture lines. Methods Cell Biol 80:3–44

    Article  CAS  PubMed  Google Scholar 

  10. Petit PX et al (1998) Disruption of the outer mitochondrial membrane as a result of large amplitude swelling: the impact of irreversible permeability transition. FEBS Lett 426(1):111–116

    Article  CAS  PubMed  Google Scholar 

  11. Close B et al (1997) Recommendations for euthanasia of experimental animals: part 2. DGXT of the European Commission. Lab Anim 31(1):1–32

    Article  CAS  PubMed  Google Scholar 

  12. Fleischer S (1979) Long-term storage of mitochondria to preserve energy-linked functions. Methods Enzymol 55:28–32

    Article  CAS  PubMed  Google Scholar 

  13. Zamzami N, Metivier D, Kroemer G (2000) Quantitation of mitochondrial transmembrane potential in cells and in isolated mitochondria. Methods Enzymol 322:208–213

    Article  CAS  PubMed  Google Scholar 

  14. Schmitt S et al (2014) Mitochondrion 19(Pt A):113-123. doi:10.1016/j.mito.2014.06.005.

Download references

Acknowledgements

We would like to acknowledge E.E. Rojo for critical reading of the manuscript. This study was supported in parts by the Deutsche Forschungsgemeinschaft (DFG) grant RU742/6-1 to H.Z.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hans Zischka .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer Science+Business Media New York

About this protocol

Cite this protocol

Schulz, S. et al. (2015). A Protocol for the Parallel Isolation of Intact Mitochondria from Rat Liver, Kidney, Heart, and Brain. In: Posch, A. (eds) Proteomic Profiling. Methods in Molecular Biology, vol 1295. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-2550-6_7

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-2550-6_7

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-2549-0

  • Online ISBN: 978-1-4939-2550-6

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics