Skip to main content

Metabolomics and Secondary Metabolite Profiling of Filamentous Fungi

  • Chapter
  • First Online:
Biosynthesis and Molecular Genetics of Fungal Secondary Metabolites, Volume 2

Part of the book series: Fungal Biology ((FUNGBIO))

Abstract

Driven by significant technical developments in analytical instrumentation and the tremendous advances in biological sciences, a change in paradigm from reductionist to holistic approaches for the study of filamentous fungi can be observed currently. This development is also reflected by the emergence of metabolomics as the latest of the so-called -omics disciplines. Metabolomics , the scientific discipline dealing with the determination of the low-molecular-weight complement of biological systems is increasingly being used to investigate the biochemical composition of fungi and their biological interactions. This chapter introduces the general concept of metabolomics and summarizes the analytical approaches used for the study of fungal exo- and endo-metabolomes. Current applications in fungal metabolomics and metabolite profiling such as chemotaxonomical classification, the search and production of novel beneficial secondary metabolites as well the dissection of host–fungus interactions are presented. Finally, novel emerging approaches for the improved fungal metabolomics, such as the use of stable isotope labeled biological samples and tracer metabolites and novel techniques, that enable spatial and temporal dissection of metabolite production, are briefly summarized.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Carlile JM, Watkinson SC, Gooday GW (2001) The fungi. 2nd edn. Elsevier, London. ISBN-13: 978-0-12-738446-7

    Google Scholar 

  2. Kliebenstein DJ (2004) Secondary metabolites and plant/environment interactions: a view through Arabidopsis thaliana tinged glasses. Plant Cell Environ 27(6):675–684

    Article  CAS  Google Scholar 

  3. Keller NP, Turner G, Bennett JW (2005) Fungal secondary metabolism—from biochemistry to genomics. Nat Rev Micro 3(12):937–947

    Article  CAS  Google Scholar 

  4. Calvo AM, Wilson RA, Bok JW, Keller NP (2002) Relationship between secondary metabolism and fungal development. Microbiol Mol Biol Rev 66(3):447–459

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  5. Karlovsky P (2012) Secondary Metabolites in Soil Ecology. In: Karlovsky P (ed) Soil Biology, vol. 14. Springer, Berlin Heidelberg, pp 1–19

    Google Scholar 

  6. Martín JF, Gutiérrez S, Aparicio JF (2000) Secondary metabolites. In: Lederberg J (ed) En: encyclopedia of microbiology, vol. 4, 2nd ed. Academic Press, San Diego, pp. 213–236

    Google Scholar 

  7. Fiehn O (2002) Metabolomics—the link between genotypes and phenotypes. Plant Mol Biol 48(1):155–171

    Article  CAS  PubMed  Google Scholar 

  8. Goodacre R (2005) Metabolomics—the way forward. Metabolomics 1(1):1–2

    Article  CAS  Google Scholar 

  9. Schuhmacher R, Krska R, Weckwerth W, Goodacre R (2013) Metabolomics and metabolite profiling. Anal Bioanal Chem 405(15):5003–5004

    Article  CAS  PubMed  Google Scholar 

  10. Patti GJ, Yanes O, Siuzdak G (2012) Innovation: metabolomics: the apogee of the omics trilogy. Nat Rev Mol Cell Biol 13(4):263–269

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  11. Bueschl C, Kluger B, Lemmens M, Adam G, Wiesenberger G, Maschietto V, Marocco A, Strauss J, Bödi S, Thallinger GG, Krska R, Schuhmacher R (2014) A novel stable isotope labelling assisted workflow for improved untargeted LC-HRMS based metabolomics research. Metabolomics 10(4):754–769

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  12. Boccard J, Veuthey J-L, Rudaz S (2010) Knowledge discovery in metabolomics: an overview of MS data handling. J Sep Sci 33(3):290–304

    Article  CAS  PubMed  Google Scholar 

  13. Katajamaa M, Orešič M (2007) Data processing for mass spectrometry-based metabolomics. J Chromatogr A 1158(1–2):318–328

    Article  CAS  PubMed  Google Scholar 

  14. Sugimoto M, Kawakami M, Robert M, Soga T, Tomita M (2012) Bioinformatics tools for mass spectroscopy-based metabolomic data processing and analysis. Curr Bioinform 7(1):96–108

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  15. Fiehn O (2001) Combining genomics, metabolome analysis, and biochemical modelling to understand metabolic networks. Comp Funct Genomics 2(3):155–168

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  16. Goodacre R, Vaidyanathan S, Dunn WB, Harrigan GG, Kell DB (2005) Metabolomics by numbers: acquiring and understanding global metabolite data. Trends Biotechnol 22(5):245–252

    Article  Google Scholar 

  17. Dettmer K, Aronov PA, Hammock BD (2007) Mass spectrometry-based metabolomics. Mass Spectrom Rev 26(1):51–78

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  18. Kell DB, Brown M, Davey HM, Dunn WB, Spasic I, Oliver SG (2005) Metabolic footprinting and systems biology: the medium is the message. Nat Rev Micro 3(7):557–565

    Article  CAS  Google Scholar 

  19. Thrane U, Anderson B, Frisvad J, Smedsgaard J (2007) The exo-metabolome in filamentous fungi. In: Nielsen J, Jewett M (eds) Metabolomics. Springer, Berlin, pp 235–52

    Chapter  Google Scholar 

  20. Werf MJvd, Overkamp KM, Muilwijk B, Coulier L, Hankemeier T (2007) Microbial metabolomics: toward a platform with full metabolome coverage. Anal Biochem 370(1):17–25

    Article  PubMed  Google Scholar 

  21. Mashego M, Rumbold K, De Mey M, Vandamme E, Soetaert W, Heijnen J (2007) Microbial metabolomics: past, present and future methodologies. Biotechnol Lett 29(1):1–16

    Article  CAS  PubMed  Google Scholar 

  22. Xu Y-J, Wang C, Ho WE, Ong CN (2014) Recent developments and applications of metabolomics in microbiological investigations. TrAC Trends Anal Chem 56(0):37–48

    Article  CAS  Google Scholar 

  23. Klitgaard A, Iversen A, Andersen M, Larsen T, Frisvad J, Nielsen K (2014) Aggressive dereplication using UHPLC–DAD–QTOF: screening extracts for up to 3000 fungal secondary metabolites. Anal Bioanal Chem 406(7):1933–1943

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  24. Wehrens R, Carvalho E, Masuero D, de Juan A, Martens S (2013) High-throughput carotenoid profiling using multivariate curve resolution. Anal Bioanal Chem 405(15):5075–5086

    Article  CAS  PubMed  Google Scholar 

  25. Villas-Bôas SG, Mas S, Åkesson M, Smedsgaard J, Nielsen J (2005) Mass spectrometry in metabolome analysis. Mass Spectrom Rev 24(5):613–646

    Article  PubMed  Google Scholar 

  26. Villas-Bôas SG, Rasmussen S, Lane GA (2005) Metabolomics or metabolite profiles? Trends Biotechnol 23(8):385–386

    Article  PubMed  Google Scholar 

  27. Pan Z, Raftery D (2007) Comparing and combining NMR spectroscopy and mass spectrometry in metabolomics. Anal Bioanal Chem 387(2):525–527

    Article  CAS  PubMed  Google Scholar 

  28. Degtyarenko K, Hastings J, de Matos P, Ennis M (2009) ChEBI: an open bioinformatics and cheminformatics resource. Current protocols in bioinformatics: John Wiley & Sons, Inc. Supplement 26, unit 14.9

    Google Scholar 

  29. Bolton E, Wang Y, Thiessen PA, Bryant SH (2008) PubChem: integrated platform of small molecules and biological activities. Chapter 12 IN Annual Reports in Computational Chemistry, vol 4. Elsevier, Oxford, pp 217–240

    Google Scholar 

  30. Laatsch H (2012) AntiBase 2012: The Natural Compound Identifier. Wiley-VCH Verlag GmbH & Co. KGaA, ISBN: 978-3527334063

    Google Scholar 

  31. Sumner L, Amberg A, Barrett D, Beale M, Beger R, Daykin C et al (2007) Proposed minimum reporting standards for chemical analysis. Metabolomics 3(3):211–221

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  32. Dunn WB, Erban A, Weber RJM, Creek DJ, Brown M, Breitling R et al (2013) Mass appeal: metabolite identification in mass spectrometry-focused untargeted metabolomics. Metabolomics 9(1):44–66

    Article  CAS  Google Scholar 

  33. Stein SE (1999) An integrated method for spectrum extraction and compound identification from gas chromatography/mass spectrometry data. J Am Soc Mass Spectrom 10(8):770–781

    Article  CAS  Google Scholar 

  34. Hiller K, Hangebrauk J, Jäger C, Spura J, Schreiber K, Schomburg D (2009) MetaboliteDetector: comprehensive analysis tool for targeted and nontargeted GC/MS based metabolome analysis. Anal Chem 81(9):3429–3439

    Article  CAS  PubMed  Google Scholar 

  35. Wiley Registry 10th Edition/ NIST 2012 Mass Spectral Library. 2013. Wiley New York, ISBN: 978-1-118-61611-6

    Google Scholar 

  36. Jeleń HH (2003) Use of solid phase microextraction (SPME) for profiling fungal volatile metabolites. Lett Appl Microbiol 36(5):263–267

    Article  PubMed  Google Scholar 

  37. Stoppacher N, Kluger B, Zeilinger S, Krska R, Schuhmacher R (2010) Identification and profiling of volatile metabolites of the biocontrol fungus Trichoderma atroviride by HS-SPME-GC-MS. J Microbiol Methods 81(2):187–193

    Article  CAS  PubMed  Google Scholar 

  38. Kluger B, Zeilinger S, Wiesenberger G, Schoefbeck D, Schuhmacher R (2013) Detection and identification of fungal volatile organic carbons. In: Gupta VK, Tuohy MG, Ayyachamy M, Turner KM, O’Donovan A (eds). Laboratory protocols in fungal biology. Springer, New York, pp 455–465

    Google Scholar 

  39. Frisvad JC, Larsen TO, de Vries R, Meijer M, Houbraken J, Cabañes FJ et al (2007) Secondary metabolite profiling, growth profiles and other tools for species recognition and important Aspergillus mycotoxins. Stud Mycol 59(0):31–37

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  40. Reithner B, Schuhmacher R, Stoppacher N, Pucher M, Brunner K, Zeilinger S (2007) Signaling via the Trichoderma atroviride mitogen-activated protein kinase Tmk1 differentially affects mycoparasitism and plant protection. Fungal Genet Biol 44(11):1123–1133

    Article  CAS  PubMed  Google Scholar 

  41. Gummer JA, Krill C, Du Fall L, Waters OC, Trengove R, Oliver R et al (2012) Metabolomics protocols for filamentous fungi. In: Bolton MD, Thomma BPHJ (eds). Plant fungal pathogens—Methods in molecular biology, vol. 835. Humana Press, New York, pp 237–254

    Google Scholar 

  42. World Health Organisation Regional Office for Europe Copenhagen (1989) Indoor air quality: organic pollutants. Report on a WHO meeting Berlin (West) 23–27 August 1987

    Google Scholar 

  43. Halket JM, Waterman D, Przyborowska AM, Patel RKP, Fraser PD, Bramley PM (2005) Chemical derivatization and mass spectral libraries in metabolic profiling by GC/MS and LC/MS/MS. J Exp Bot 56(410):219–243

    Article  CAS  PubMed  Google Scholar 

  44. Tholl D, Boland W, Hansel A, Loreto F, Roese USR, Schnitzler J-P (2006) Practical approaches to plant volatile analysis. Plant J 45:540–560

    Article  CAS  PubMed  Google Scholar 

  45. Rubiolo P, Sgorbini B, Liberto E, Cordero C, Bicchi C (2010) Analysis of the plant volatile fraction. In: Herrmann A (ed) The chemistry and biology of volatiles. Wiley, Chichester, pp 49–93

    Chapter  Google Scholar 

  46. Rowan DD (2001) Volatile metabolites. Metabolites 1(1):41–63

    Article  Google Scholar 

  47. Zeilinger S, Schuhmacher R (2013) Volatile organic metabolites of Trichoderma spp.: biosynthesis, biology and analytics. In: Mukherjee PK, Horwitz BA, Shankar Singh U, Mukherjee M, Schmoll M (eds). Trichoderma—biology and Applications. CAB International, Wallingford, pp 110–127

    Google Scholar 

  48. Roessner U, Dias DA (2013) Plant tissue extraction for metabolomics. Methods Mol Biol 1055:21–28

    PubMed  Google Scholar 

  49. Smart KF, Aggio RBM, Van Houtte JR, Villas-Boas SG (2010) Analytical platform for metabolome analysis of microbial cells using methyl chloroformate derivatization followed by gas chromatography-mass spectrometry. Nat Protocols 5(10):1709–1729

    Article  CAS  Google Scholar 

  50. Koek MM, Muilwijk B, van der Werf MJ, Hankemeier T (2006) Microbial metabolomics with gas chromatography/mass spectrometry. Anal Chem 78(4):1272–1281

    Article  CAS  PubMed  Google Scholar 

  51. Madla S, Miura D, Wariishi H (2012) Optimization of extraction method for GC-MS based metabolomics for filamentous fungi. J Microbial Biochem Technol 4:005–009

    Article  CAS  Google Scholar 

  52. Wu Z, Huang Z, Lehmann R, Zhao C, Xu G (2009) The application of chromatography-mass spectrometry: methods to metabonomics. Chroma 69(1):23–32

    Article  Google Scholar 

  53. Klavins K, Drexler H, Hann S, Koellensperger G (2014) Quantitative metabolite profiling utilizing parallel column analysis for simultaneous reversed-phase and hydrophilic interaction liquid chromatography separations combined with tandem mass spectrometry. Anal Chem 86(9):4145–4150

    Article  CAS  PubMed  Google Scholar 

  54. Abia WA, Simo GN, Warth B, Sulyok M, Krska R, Tchana A, Moundipa PF (2013) Determination of multiple mycotoxins levels in poultry feeds from Cameroon. Jpn J Vet Res 61:S33–39

    PubMed  Google Scholar 

  55. Lehner SM, Neumann NKN, Sulyok M, Lemmens M, Krska R, Schuhmacher R (2011) Evaluation of LC-high-resolution FT-Orbitrap MS for the quantification of selected mycotoxins and the simultaneous screening of fungal metabolites in food. Food Addit Contam Part A Chem Anal Control Expo Risk Assess 28(10):1457–1468

    Article  CAS  PubMed  Google Scholar 

  56. Ates E, Godula M, Stroka J, Senyuva H (2014) Screening of plant and fungal metabolites in wheat, maize and animal feed using automated on-line clean-up coupled to high resolution mass spectrometry. Food Chem 142(0):276–284

    Article  CAS  PubMed  Google Scholar 

  57. Chokkathukalam A, Jankevics A, Creek DJ, Achcar F, Barrett MP, Breitling R (2013) mzMatch–ISO: an R tool for the annotation and relative quantification of isotope-labelled mass spectrometry data. Bioinformatics 29(2):281–283

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  58. Huang X, Chen Y Jr, Cho K, Nikolskiy I, Crawford PA, Patti GJ (2014) X13CMS: global tracking of isotopic labels in untargeted metabolomics. Anal Chem 86(3):1632–1639

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  59. Oliver SG, Winson MK, Kell DB, Baganz F Systematic functional analysis of the yeast genome. Trends Biotechnol 16(9):373–378

    Google Scholar 

  60. Frisvad JC, Filtenborg O (1983) Classification of terverticillate penicillia based on profiles of mycotoxins and other secondary metabolites. Appl Environ Microbiol 46(6):1301–1310

    CAS  PubMed Central  PubMed  Google Scholar 

  61. Frisvad JC, Andersen B, Thrane U (2008) The use of secondary metabolite profiling in chemotaxonomy of filamentous fungi. Mycol Res 112(2):231–240

    Article  CAS  PubMed  Google Scholar 

  62. Scott PM, Lawrence JW, van Walbeek W (1970) Detection of mycotoxins by thin-layer chromatography: application to screening of fungal extracts. Appl microbiol 20(5):839–842

    CAS  PubMed Central  PubMed  Google Scholar 

  63. Kang D, Kim J, Choi JN, Liu KH, Lee CH (2011) Chemotaxonomy of Trichoderma spp. using mass spectrometry-based metabolite profiling. J Microbiol Biotechnol 21(1):5–13

    Article  CAS  PubMed  Google Scholar 

  64. Aliferis K, Cubeta M, Jabaji S (2013) Chemotaxonomy of fungi in the Rhizoctonia solani species complex performing GC/MS metabolite profiling. Metabolomics 9(1):159–169

    Article  CAS  Google Scholar 

  65. Nielsen KF, Smedsgaard J (2003) Fungal metabolite screening: database of 474 mycotoxins and fungal metabolites for dereplication by standardised liquid chromatography–UV–mass spectrometry methodology. J Chromatogr A 1002(1–2):111–136

    Article  CAS  PubMed  Google Scholar 

  66. Stadler M, Ju Y-M, Rogers JD (2004) Chemotaxonomy of Entonaema, Rhopalostroma and other Xylariaceae. Mycol Res 108(03):239–256

    Article  PubMed  Google Scholar 

  67. Abreu LM, Costa SS, Pfenning LH, Takahashi JA, Larsen TO, Andersen B (2012) Chemical and molecular characterization of Phomopsis and Cytospora-like endophytes from different host plants in Brazil. Fungal Biol 116(2):249–260

    Article  CAS  PubMed  Google Scholar 

  68. Deane C, Mitchell D (2014) Lessons learned from the transformation of natural product discovery to a genome-driven endeavor. J Ind Microbiol Biotechnol 41(2):315–331

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  69. Bode HB, Bethe B, Höfs R, Zeeck A (2002) Big effects from small changes: possible ways to explore nature’s chemical diversity. Chembiochem 3(7):619–627

    Article  CAS  PubMed  Google Scholar 

  70. Gross H (2007) Strategies to unravel the function of orphan biosynthesis pathways: recent examples and future prospects. Appl Microbiol Biotechnol 75(2):267–277

    Article  CAS  PubMed  Google Scholar 

  71. Lim FY, Sanchez JF, Wang CCC, Keller NP (2012) Toward awakening cryptic secondary metabolite gene clusters in filamentous fungi. In: David AH (ed). Methods in enzymology, vol 517. Elsevier, Amsterdam, pp 303–324

    Google Scholar 

  72. Williams RB, Henrikson JC, Hoover AR, Lee AE, Cichewicz RH (2008) Epigenetic remodeling of the fungal secondary metabolome. Org Biomol Chem 6(11):1895–1897

    Article  CAS  PubMed  Google Scholar 

  73. Brakhage AA, Schroeckh V (2011) Fungal secondary metabolites—strategies to activate silent gene clusters. Fungal Genet Biol 48(1):15–22

    Article  CAS  PubMed  Google Scholar 

  74. Elias BC, Said S, de Albuquerque S, Pupo MT (2006) The influence of culture conditions on the biosynthesis of secondary metabolites by Penicillium verrucosum Dierck. Microbiol Res 161(3):273–280

    Article  CAS  PubMed  Google Scholar 

  75. Sørensen JL, Sondergaard TE (2014) The effects of different yeast extracts on secondary metabolite production in Fusarium. Int J Food Microbiol 170(0):55–60

    Article  PubMed  Google Scholar 

  76. Scherlach K, Hertweck C (2009) Triggering cryptic natural product biosynthesis in microorganisms. Org Biomol Chem 7(9):1753–1760

    Article  CAS  PubMed  Google Scholar 

  77. Wiemann P, Sieber CMK, von Bargen KW, Studt L, Niehaus E-M, Espino JJ et al (2013) Deciphering the cryptic genome: genome-wide analyses of the rice pathogen Fusarium fujikuroi reveal complex regulation of secondary metabolism and novel metabolites. PLoS Pathog 9(6):e1003475

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  78. Connolly LR, Smith KM, Freitag M (2013) The Fusarium graminearum Histone H3 K27 Methyltransferase KMT6 regulates development and expression of secondary metabolite gene clusters. PLoS Genet 9(10):e1003916

    Article  PubMed Central  PubMed  Google Scholar 

  79. Lang G, Mayhudin NA, Mitova MI, Sun L, van der Sar S, Blunt JW et al (2008) Evolving trends in the dereplication of natural product extracts: new methodology for rapid, small-scale investigation of natural product extracts. J Nat Prod 71(9):1595–1599

    Article  CAS  PubMed  Google Scholar 

  80. Forner D, Berrué F, Correa H, Duncan K, Kerr RG (2013) Chemical dereplication of marine actinomycetes by liquid chromatography–high resolution mass spectrometry profiling and statistical analysis. Anal Chim Acta 805(0):70–79

    Article  CAS  PubMed  Google Scholar 

  81. Kildgaard S, Mansson M, Dosen I, Klitgaard A, Frisvad JC, Larsen TO et al (2014) Accurate dereplication of bioactive secondary metabolites from marine-derived fungi by UHPLC-DAD-QTOFMS and a MS/HRMS library. Mar Drugs 12(6):3681–3705

    Article  PubMed Central  PubMed  Google Scholar 

  82. Breitling R, Ceniceros A, Jankevics A, Takano E (2013) Metabolomics for secondary metabolite research. Metabolites 3(4):1076–1083

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  83. Allwood JW, Heald J, Lloyd A, Goodacre R, Mur LJ (2012) Separating the Inseparable: The metabolomic analysis of plant–pathogen interactions. In: Hardy NW, Hall RD (eds). Plant metabolomics—methods in molecular biology, vol. 860. Humana Press, New York, pp 31–49

    Google Scholar 

  84. Aliferis KA, Jabaji S (2012) Deciphering plant–pathogen interactions applying metabolomics: principles and applications. Can J Plant Pathol 34(1):29–33

    Article  CAS  Google Scholar 

  85. Watrous J, Roach P, Alexandrov T, Heath BS, Yang JY, Kersten RD et al (2012) Mass spectral molecular networking of living microbial colonies. PNAS 1743–1752

    Google Scholar 

  86. Jonkers W, Rodriguez Estrada AE, Lee K, Breakspear A, May G, Kistler HC (2012) Metabolome and Transcriptome of the Interaction between Ustilago maydis and Fusarium verticillioides in vitro. Appl Environ Microbiol 78(10):3656–3667

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  87. Balmer D, de Papajewski DV, Planchamp C, Glauser G, Mauch-Mani B (2013) Induced resistance in maize is based on organ-specific defence responses. Plant J 74(2):213–225

    Article  CAS  PubMed  Google Scholar 

  88. Brotman Y, Lisec J, Méret M, Chet I, Willmitzer L, Viterbo A (2012) Transcript and metabolite analysis of the Trichoderma-induced systemic resistance response to Pseudomonas syringae in Arabidopsis thaliana. Microbiology 158(1):139–146

    Article  CAS  PubMed  Google Scholar 

  89. Vincent D, Du Fall LA, Livk A, Mathesius U, Lipscombe RJ, Oliver RP et al (2012) A functional genomics approach to dissect the mode of action of the Stagonospora nodorum effector protein SnToxA in wheat. Mol Plant Pathol 13(5):467–482

    Article  CAS  PubMed  Google Scholar 

  90. Warth B, Parich A, Bueschl C, Schoefbeck D, Neumann NKN, Kluger B et al (2014) GC–MS based targeted metabolic profiling identifies changes in the wheat metabolome following deoxynivalenol treatment. Metabolomics (in press). doi. 10.1007/s11306-014-0731-1

    Google Scholar 

  91. Voll LM, Horst RJ, Voitsik AM, Zajic D, Samans B, Pons-Kühnemann J et al (2011) Common motifs in the response of cereal primary metabolism to fungal pathogens are not based on similar transcriptional reprogramming. Front Plant Sci 2:39

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  92. Allwood JW, Clarke A, Goodacre R, Mur LAJ (2010) Dual metabolomics: a novel approach to understanding plant–pathogen interactions. Phytochemistry 71(5–6):590–597

    Article  PubMed  Google Scholar 

  93. Cuomo CA, Güldener U, Xu J-R, Trail F, Turgeon BG, Di Pietro A et al (2007) The Fusarium graminearum genome reveals a link between localized polymorphism and pathogen specialization. Science 317(5843):1400–1402

    Article  CAS  PubMed  Google Scholar 

  94. Kubicek C, Herrera-Estrella A, Seidl-Seiboth V, Martinez D, Druzhinina I, Thon M et al (2011) Comparative genome sequence analysis underscores mycoparasitism as the ancestral life style of Trichoderma. Genome Biol 12(4):R40

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  95. Crutcher FK, Parich A, Schuhmacher R, Mukherjee PK, Zeilinger S, Kenerley CM (2013) A putative terpene cyclase, vir4, is responsible for the biosynthesis of volatile terpene compounds in the biocontrol fungus Trichoderma virens. Fungal Genet Biol 56(0):67–77

    Article  CAS  PubMed  Google Scholar 

  96. Roze L, Chanda A, Laivenieks M, Beaudry R, Artymovich K, Koptina A et al (2010) Volatile profiling reveals intracellular metabolic changes in Aspergillus parasiticus: veA regulates branched chain amino acid and ethanol metabolism. BMC Biochem 11(1):33

    Article  PubMed Central  PubMed  Google Scholar 

  97. Roze L, Chanda A, Linz JE (Jan 2011) Compartmentalization and molecular traffic in secondary metabolism: a new understanding of established cellular processes. Fungal Genet Biol 48(1):35–48

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  98. Bueschl C, Krska R, Kluger B, Schuhmacher R (2013) Isotopic labeling-assisted metabolomics using LC–MS. Anal Bioanal Chem 405(1):27–33

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  99. Chokkathukalam A, Kim D-H, Barrett MP, Breitling R, Creek DJ (2014) Stable isotope-labeling studies in metabolomics: new insights into structure and dynamics of metabolic networks. Bioanalysis 6(4):511–524

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  100. Cano PM, Jamin EL, Tadrist S, Bourdaud’hui P, Péan M, Debrauwer L et al (2013) New untargeted metabolic profiling combining mass spectrometry and isotopic labeling: application on Aspergillus fumigatus grown on wheat. Anal Chem 85(17):8412–8420

    Article  CAS  PubMed  Google Scholar 

  101. Kluger B, Bueschl C, Lemmens M, Berthiller F, Häubl G, Jaunecker G et al (2012) Stable isotopic labelling-assisted untargeted metabolic profiling reveals novel conjugates of the mycotoxin deoxynivalenol in wheat. Anal Bioanal Chem 5031–5036

    Google Scholar 

  102. Hsu C-C, ElNaggar MS, Peng Y, Fang J, Sanchez LM, Mascuch SJ et al (2013) Real-time metabolomics on living microorganisms using ambient electrospray ionization flow-probe. Anal Chem 85(15):7014–7018

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  103. Hu J-B, Chen Y-C, Urban PL (2012) On-target labeling of intracellular metabolites combined with chemical mapping of individual hyphae revealing cytoplasmic relocation of isotopologues. Anal Chem 84(11):5110–5116

    Article  CAS  PubMed  Google Scholar 

  104. Moree W, Yang J, Zhao X, Liu W-T, Aparicio M, Atencio L et al (2013) Imaging mass spectrometry of a coral microbe interaction with fungi. J Chem Ecol 39(7):1045–1054

    Google Scholar 

Download references

Acknowledgements

The authors would like to thank the Austrian Science Fund (project SFB Fusarium 3706-B11) for financial support. Thanks are also offered to Benedikt Warth for his valuable comments on the draft of this manuscript as well as Maria Doppler and Christoph Bueschl for their kind assistance in preparing the figures. The presented work contributes in part to the PhD thesis of Bernhard Kluger.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bernhard Kluger MSc .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer Science+Business Media New York

About this chapter

Cite this chapter

Kluger, B., Lehner, S., Schuhmacher, R. (2015). Metabolomics and Secondary Metabolite Profiling of Filamentous Fungi. In: Zeilinger, S., Martín, JF., García-Estrada, C. (eds) Biosynthesis and Molecular Genetics of Fungal Secondary Metabolites, Volume 2. Fungal Biology. Springer, New York, NY. https://doi.org/10.1007/978-1-4939-2531-5_6

Download citation

Publish with us

Policies and ethics