Skip to main content

U1 interference (U1i) for Antiviral Approaches

  • Chapter
  • First Online:

Part of the book series: Advances in Experimental Medicine and Biology ((ASGCT,volume 848))

Abstract

U1 snRNP (U1 small nuclear ribonucleoprotein) is an essential component of the splicing machinery. U1 snRNP also plays an additional role in 3′-end mRNA processing when it binds close to polyadenylation sites (PAS). Cotranscriptionally, U1 snRNP binding close to putative PAS prevents premature cleavage and polyadenylation and consequently safeguards pre-mRNA transcripts and defines promoter directionality. At the 3′-end of mRNAs, U1 snRNP binding to putative PAS may regulate mRNA length or inhibit polyadenylation and, therefore, gene expression. U1 interference (U1i) is a technique to inhibit gene expression based on the property of U1 snRNP to inhibit polyadenylation. It requires the expression of a modified U1 snRNP, which interacts with a target gene upstream of its PAS and inhibits target gene expression. U1i has been used to inhibit the expression of reporter or endogenous genes both in tissue culture and in animal models. In addition, U1i combination with RNA interference (RNAi), another RNA-based gene silencing technology, results in a synergistic increased inhibition. This is of special interest for antiviral therapy, where strong inhibitions may be required to decrease the expression of replicative viral RNAs and impact the replication cycle. Furthermore, the combination of U1i and RNAi-based inhibitors should prevent the appearance of viral variants resistant to the treatment and allows the dose of inhibitors to be decreased and a functional inhibition to be obtained with fewer off target effects. In fact, U1i has been used to inhibit the expression of HIV-1 and HBV, whose viral genomes express mRNAs that must be polyadenylated by the nuclear polyadenylation machinery. In the case of HBV, antiviral U1i has been combined with RNAi to demonstrate a strong inhibition of expression from HBV sequences in vivo. This shows that, although several aspects of U1i technology remain to be addressed, U1i and U1i combined with RNAi have great potential as antivirals.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Will CL, Luhrmann R. Spliceosomal UsnRNP biogenesis, structure and function. Curr Opin Cell Biol. 2001;13(3):290–301.

    Article  CAS  PubMed  Google Scholar 

  2. Black DL. Mechanisms of alternative pre-messenger RNA splicing. Annu Rev Biochem. 2003;72:291–336.

    Article  CAS  PubMed  Google Scholar 

  3. Will CL, Luhrmann R. Spliceosome structure and function. Cold Spring Harb Perspect Biol. 2011;3(7):a003707. doi:10.1101/cshperspect.a003707.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  4. Lund E, Dahlberg JE. True genes for human U1 small nuclear RNA. Copy number, polymorphism, and methylation. J Biol Chem. 1984;259(3):2013–21.

    CAS  PubMed  Google Scholar 

  5. Baserga SJ, Steitz JA. The diverse world of small ribonucleoproteins. In: The RNA world. Cold Spring Harbor, NY: Cold Spring Harbor Laboratory Press; 1993. p. 359–81.

    Google Scholar 

  6. Wahl MC, Will CL, Luhrmann R. The spliceosome: design principles of a dynamic RNP machine. Cell. 2009;136(4):701–18.

    Article  CAS  PubMed  Google Scholar 

  7. Furger A, O’Sullivan JM, Binnie A, Lee BA, Proudfoot NJ. Promoter proximal splice sites enhance transcription. Genes Dev. 2002;16(21):2792–9.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  8. Damgaard CK, Kahns S, Lykke-Andersen S, Nielsen AL, Jensen TH, Kjems J. A 5′ splice site enhances the recruitment of basal transcription initiation factors in vivo. Mol Cell. 2008;29(2):271–8.

    Article  CAS  PubMed  Google Scholar 

  9. Kwek KY, Murphy S, Furger A, Thomas B, O’Gorman W, Kimura H, Proudfoot NJ, Akoulitchev A. U1 snRNA associates with TFIIH and regulates transcriptional initiation. Nat Struct Biol. 2002;9(11):800–5.

    CAS  PubMed  Google Scholar 

  10. Furth PA, Choe WT, Rex JH, Byrne JC, Baker CC. Sequences homologous to 5′ splice sites are required for the inhibitory activity of papillomavirus late 3′ untranslated regions. Mol Cell Biol. 1994;14(8):5278–89.

    PubMed Central  CAS  PubMed  Google Scholar 

  11. Gunderson SI, Polycarpou-Schwarz M, Mattaj IW. U1 snRNP inhibits pre-mRNA polyadenylation through a direct interaction between U1 70K and poly(A) polymerase. Mol Cell. 1998;1(2):255–64.

    Article  CAS  PubMed  Google Scholar 

  12. Goraczniak R, Gunderson SI. The regulatory element in the 3′-untranslated region of human papillomavirus 16 inhibits expression by binding CUG-binding protein 1. J Biol Chem. 2008;283(4):2286–96.

    Article  CAS  PubMed  Google Scholar 

  13. Ashe MP, Pearson LH, Proudfoot NJ. The HIV-1 5′ LTR poly(A) site is inactivated by U1 snRNP interaction with the downstream major splice donor site. EMBO J. 1997;16(18):5752–63.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  14. Vagner S, Ruegsegger U, Gunderson SI, Keller W, Mattaj IW. Position-dependent inhibition of the cleavage step of pre-mRNA 3′-end processing by U1 snRNP. RNA. 2000;6(2):178–88.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  15. Kaida D, Berg MG, Younis I, Kasim M, Singh LN, Wan L, Dreyfuss G. U1 snRNP protects pre-mRNAs from premature cleavage and polyadenylation. Nature. 2010;468(7324):664–8.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  16. Berg MG, Singh LN, Younis I, Liu Q, Pinto AM, Kaida D, Zhang Z, Cho S, Sherrill-Mix S, Wan L, Dreyfuss G. U1 snRNP determines mRNA length and regulates isoform expression. Cell. 2012;150(1):53–64.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  17. Almada AE, Wu X, Kriz AJ, Burge CB, Sharp PA. Promoter directionality is controlled by U1 snRNP and polyadenylation signals. Nature. 2013;499(7458):360–3.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  18. Ntini E, Jarvelin AI, Bornholdt J, Chen Y, Boyd M, Jorgensen M, Andersson R, Hoof I, Schein A, Andersen PR, Andersen PK, Preker P, Valen E, Zhao X, Pelechano V, Steinmetz LM, Sandelin A, Jensen TH. Polyadenylation site-induced decay of upstream transcripts enforces promoter directionality. Nat Struct Mol Biol. 2013;20(8):923–8.

    Article  CAS  PubMed  Google Scholar 

  19. Andersen PK, Lykke-Andersen S, Jensen TH. Promoter-proximal polyadenylation sites reduce transcription activity. Genes Dev. 2012;26(19):2169–79.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  20. Goraczniak R, Behlke MA, Gunderson SI. Gene silencing by synthetic U1 adaptors. Nat Biotechnol. 2009;27(3):257–63.

    Article  CAS  PubMed  Google Scholar 

  21. Guan F, Caratozzolo RM, Goraczniak R, Ho ES, Gunderson SI. A bipartite U1 site represses U1A expression by synergizing with PIE to inhibit nuclear polyadenylation. RNA. 2007;13(12):2129–40.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  22. Langemeier J, Schrom EM, Rabner A, Radtke M, Zychlinski D, Saborowski A, Bohn G, Mandel-Gutfreund Y, Bodem J, Klein C, Bohne J. A complex immunodeficiency is based on U1 snRNP-mediated poly(A) site suppression. EMBO J. 2012;31(20):4035–44.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  23. Beckley SA, Liu P, Stover ML, Gunderson SI, Lichtler AC, Rowe DW. Reduction of target gene expression by a modified U1 snRNA. Mol Cell Biol. 2001;21(8):2815–25.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  24. Abad X, Vera M, Jung SP, Oswald E, Romero I, Amin V, Fortes P, Gunderson SI. Requirements for gene silencing mediated by U1 snRNA binding to a target sequence. Nucleic Acids Res. 2008;36(7):2338–52.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  25. Fortes P, Cuevas Y, Guan F, Liu P, Pentlicky S, Jung SP, Martinez-Chantar ML, Prieto J, Rowe D, Gunderson SI. Inhibiting expression of specific genes in mammalian cells with 5′ end-mutated U1 small nuclear RNAs targeted to terminal exons of pre-mRNA. Proc Natl Acad Sci U S A. 2003;100(14):8264–9.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  26. Sajic R, Lee K, Asai K, Sakac D, Branch DR, Upton C, Cochrane A. Use of modified U1 snRNAs to inhibit HIV-1 replication. Nucleic Acids Res. 2007;35(1):247–55.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  27. Liu P, Gucwa A, Stover ML, Buck E, Lichtler A, Rowe D. Analysis of inhibitory action of modified U1 snRNAs on target gene expression: discrimination of two RNA targets differing by a 1 bp mismatch. Nucleic Acids Res. 2002;30(11):2329–39.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  28. Jankowska A, Gunderson SI, Andrusiewicz M, Burczynska B, Szczerba A. Reduction of human chorionic gonadotropin beta subunit expression by modified U1 snRNA caused apoptosis in cervical, cancer cells. Mol Cancer. 2008;7:26.

    Article  PubMed Central  PubMed  Google Scholar 

  29. Koornneef A, van Logtenstein R, Timmermans E, Pisas L, Blits B, Abad X, Fortes P, Petry H, Konstantinova P, Ritsema T. AAV-mediated in vivo knockdown of luciferase using combinatorial RNAi and U1i. Gene Ther. 2011;18(9):929–35.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  30. Blazquez L, Gonzalez-Rojas SJ, Abad A, Razquin N, Abad X, Fortes P. Increased in vivo inhibition of gene expression by combining RNA interference and U1 inhibition. Nucleic Acids Res. 2012;40(1):e8.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  31. Shin HM, Minter LM, Cho OH, Gottipati S, Fauq AH, Golde TE, Sonenshein GE, Osborne BA. Notch1 augments NF-kappaB activity by facilitating its nuclear retention. EMBO J. 2006;25(1):129–38.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  32. Blazquez L, Fortes P. U1 snRNP control of 3′-end processing and the therapeutic application of U1 inhibition combined with RNA interference. Curr Mol Med. 2013;13(7):1203–16.

    Article  CAS  PubMed  Google Scholar 

  33. Zuker M. Mfold web server for nucleic acid folding and hybridization prediction. Nucleic Acids Res. 2003;31(13):3406–15.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  34. Sharma D, Issac B, Raghava GP, Ramaswamy R. Spectral repeat finder (SRF): identification of repetitive sequences using Fourier transformation. Bioinformatics. 2004;20(9):1405–12.

    Article  CAS  PubMed  Google Scholar 

  35. McQuisten KA, Peek AS. Identification of sequence motifs significantly associated with antisense activity. BMC Bioinformatics. 2007;8:184.

    Article  PubMed Central  PubMed  Google Scholar 

  36. Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ. Basic local alignment search tool. J Mol Biol. 1990;215(3):403–10.

    Article  CAS  PubMed  Google Scholar 

  37. Knoepfel SA, Abad A, Abad X, Fortes P, Berkhout B. Design of modified U1i molecules against HIV-1 RNA. Antiviral Res. 2012;94(3):208–16.

    Article  CAS  PubMed  Google Scholar 

  38. Abad X, Razquin N, Abad A, Fortes P. Combination of RNA interference and U1 inhibition leads to increased inhibition of gene expression. Nucleic Acids Res. 2010;38(13):e136.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  39. Spiluttini B, Gu B, Belagal P, Smirnova AS, Nguyen VT, Hebert C, Schmidt U, Bertrand E, Darzacq X, Bensaude O. Splicing-independent recruitment of U1 snRNP to a transcription unit in living cells. J Cell Sci. 2010;123(Pt 12):2085–93.

    Article  CAS  PubMed  Google Scholar 

  40. Kato K, Hitomi Y, Imamura K, Esumi H. Hyperstable U1snRNA complementary to the K-ras transcripts induces cell death in pancreatic cancer cells. Br J Cancer. 2002;87(8):898–904.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  41. Mandal D, Feng Z, Stoltzfus CM. Excessive RNA splicing and inhibition of HIV-1 replication induced by modified U1 small nuclear RNAs. J Virol. 2010;84(24):12790–800.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  42. Tanner G, Glaus E, Barthelmes D, Ader M, Fleischhauer J, Pagani F, Berger W, Neidhardt J. Therapeutic strategy to rescue mutation-induced exon skipping in rhodopsin by adaptation of U1 snRNA. Hum Mutat. 2009;30(2):255–63.

    Article  CAS  PubMed  Google Scholar 

  43. Blazquez L, Aiastui A, Goicoechea M, Martins de Araujo M, Avril A, Beley C, Garcia L, Valcarcel J, Fortes P, Lopez de Munain A. In vitro correction of a pseudoexon-generating deep intronic mutation in LGMD2A by antisense oligonucleotides and modified small nuclear RNAs. Hum Mutat. 2013;34(10):1387–95.

    Article  CAS  PubMed  Google Scholar 

  44. Vickers TA, Sabripour M, Crooke ST. U1 adaptors result in reduction of multiple pre-mRNA species principally by sequestering U1snRNP. Nucleic Acids Res. 2011;39(10):e71.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  45. Goraczniak R, Wall BA, Behlke MA, Lennox KA, Ho ES, Zaphiros NH, Jakubowski C, Patel NR, Zhao S, Magaway C, Subbie SA, Jenny Yu L, Lacava S, Reuhl KR, Chen S, Gunderson SI. U1 adaptor oligonucleotides targeting BCL2 and GRM1 suppress growth of human melanoma xenografts in vivo. Mol Ther Nucleic Acids. 2013;2:e92.

    Article  PubMed  Google Scholar 

  46. Jackson AL, Bartz SR, Schelter J, Kobayashi SV, Burchard J, Mao M, Li B, Cavet G, Linsley PS. Expression profiling reveals off-target gene regulation by RNAi. Nat Biotechnol. 2003;21(6):635–7.

    Article  CAS  PubMed  Google Scholar 

  47. Sledz CA, Holko M, de Veer MJ, Silverman RH, Williams BR. Activation of the interferon system by short-interfering RNAs. Nat Cell Biol. 2003;5(9):834–9.

    Article  CAS  PubMed  Google Scholar 

  48. Grimm D, Streetz KL, Jopling CL, Storm TA, Pandey K, Davis CR, Marion P, Salazar F, Kay MA. Fatality in mice due to oversaturation of cellular microRNA/short hairpin RNA pathways. Nature. 2006;441(7092):537–41.

    Article  CAS  PubMed  Google Scholar 

  49. UNAIDS Global Report; 2012.

    Google Scholar 

  50. Karn J, Stoltzfus CM. Transcriptional and posttranscriptional regulation of HIV-1 gene expression. Cold Spring Harb Perspect Med. 2012;2(2):a006916.

    Article  PubMed Central  PubMed  Google Scholar 

  51. Liu D, Donegan J, Nuovo G, Mitra D, Laurence J. Stable human immunodeficiency virus type 1 (HIV-1) resistance in transformed CD4+ monocytic cells treated with multitargeting HIV-1 antisense sequences incorporated into U1 snRNA. J Virol. 1997;71(5):4079–85.

    PubMed Central  CAS  PubMed  Google Scholar 

  52. ter Brake O, Konstantinova P, Ceylan M, Berkhout B. Silencing of HIV-1 with RNA interference: a multiple shRNA approach. Mol Ther. 2006;14(6):883–92.

    Article  PubMed  Google Scholar 

  53. Levrero M, Pollicino T, Petersen J, Belloni L, Raimondo G, Dandri M. Control of cccDNA function in hepatitis B virus infection. J Hepatol. 2009;51(3):581–92.

    Article  CAS  PubMed  Google Scholar 

  54. Hollinger F, Liang T. Hepatitis B virus. In: Knipe D, Howley P, editors. Fields virology. Philadelphia, PA: Lippincott-Raven Publishers; 2001. p. 2971.

    Google Scholar 

  55. Romano PR, McCallus DE, Pachuk CJ. RNA interference-mediated prevention and therapy for hepatocellular carcinoma. Oncogene. 2006;25(27):3857–65.

    Article  CAS  PubMed  Google Scholar 

  56. Scaglione SJ, Lok AS. Effectiveness of hepatitis B treatment in clinical practice. Gastroenterology. 2012;142(6):1360–1368.e1.

    Article  PubMed  Google Scholar 

  57. Nebbia G, Peppa D, Maini MK. Hepatitis B infection: current concepts and future challenges. QJM. 2012;105(2):109–13.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  58. Blazquez L, Fortes P. Harnessing RNAi for the treatment of viral infections. In: Arbuthnot P, Weinberg M, editors. Applied RNAi: from fundamental research to therapeutic applications. Linton, Cambs, UK:Horizon Press; 2014.

    Google Scholar 

  59. Ely A, Naidoo T, Mufamadi S, Crowther C, Arbuthnot P. Expressed anti-HBV primary microRNA shuttles inhibit viral replication efficiently in vitro and in vivo. Mol Ther. 2008;16(6):1105–12.

    Article  CAS  PubMed  Google Scholar 

  60. Hutvagner G, Zamore PD. A microRNA in a multiple-turnover RNAi enzyme complex. Science. 2002;297(5589):2056–60.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Puri Fortes Ph.D. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 American Society of Gene and Cell Therapy

About this chapter

Cite this chapter

Blázquez, L., Fortes, P. (2015). U1 interference (U1i) for Antiviral Approaches. In: Berkhout, B., Ertl, H., Weinberg, M. (eds) Gene Therapy for HIV and Chronic Infections. Advances in Experimental Medicine and Biology(), vol 848. Springer, New York, NY. https://doi.org/10.1007/978-1-4939-2432-5_3

Download citation

Publish with us

Policies and ethics