Skip to main content

Methods for Assessing the In Vitro Transforming Activity of NF-κB Transcription Factor c-Rel and Related Proteins

  • Protocol
  • First Online:
NF-kappa B

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1280))

Abstract

Among NF-κB transcription factors, c-Rel and c-Rel-derived proteins, including v-Rel, are the only ones that have shown consistent and frank transforming activity in cell culture. In particular, viral, chicken, mouse, and human Rel proteins can rapidly transform primary chicken spleen and bone marrow cells. Overexpression of a human Rel protein missing a C-terminal transactivation domain can also enhance the transformed state of the human B-lymphoma cell line BJAB. As described in this chapter, these in vitro assays can be used to quantitatively assess the transforming activity of Rel proteins.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 119.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 159.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Gilmore TD (2006) Introduction to NF-κB: players, pathways, perspectives. Oncogene 25:6680–6684

    Article  CAS  PubMed  Google Scholar 

  2. Bassères DS, Baldwin AS (2006) Nuclear factor-κB and inhibitor of κB kinase pathways in oncogenic initiation and progression. Oncogene 25:6817–6830

    Article  PubMed  Google Scholar 

  3. Gilmore TD (1999) Multiple mutations contribute to the oncogenicity of the retroviral oncoprotein v-Rel. Oncogene 18:6925–6937

    Article  CAS  PubMed  Google Scholar 

  4. Carrasco D, Rizzo CA, Dorfman K, Bravo R (1996) The v-rel oncogene promotes malignant T-cell leukemia/lymphoma in transgenic mice. EMBO J 15:3640–3650

    PubMed Central  CAS  PubMed  Google Scholar 

  5. Courtois G, Gilmore TD (2006) Mutations in the NF-κB signaling pathway: implications for human disease. Oncogene 25:6831–6843

    Article  CAS  PubMed  Google Scholar 

  6. Fan Y, Gélinas C (2007) An optimal range of transcription potency is necessary for efficient cell transformation by c-Rel to ensure optimal nuclear localization and gene-specific activation. Oncogene 26:4038–4043

    Article  CAS  PubMed  Google Scholar 

  7. Fan Y, Rayet B, Gélinas C (2004) Divergent C-terminal transactivation domains of Rel/NF-κB proteins are critical determinants of their oncogenic potential. Oncogene 23:1030–1042

    Article  CAS  PubMed  Google Scholar 

  8. Romieu-Mourez R, Kim DW, Shin SM, Demicco EG, Landesman-Bollag E, Selden DC et al (2003) Mouse mammary tumor virus c-rel transgenic mice develop mammary tumors. Mol Cell Biol 23:5738–5754

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  9. Chin M, Herscovitch M, Zhang N, Waxman DJ, Gilmore TD (2009) Overexpression of an activated version of the REL oncoprotein enhances the transformed state of the human B-lymphoma BJAB cell line and alters its gene expression profile. Oncogene 28:2100–2111

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  10. Hoelzer JD, Lewis RB, Wasmuth CR, Bose HR Jr (1980) Hematopoietic cell transformation by reticuloendotheliosis virus: characterization of the genetic defect. Virology 100:462–472

    Article  CAS  PubMed  Google Scholar 

  11. Kralova J, Schatzle JD, Bargmann W, Bose HR Jr (1994) Transformation of avian fibroblasts overexpressing the c-rel proto-oncogene and a variant of c-rel lacking 40 C-terminal amino acids. J Virol 68:2073–2083

    PubMed Central  CAS  PubMed  Google Scholar 

  12. Moore BE, Bose HR Jr (1988) Expression of the v-rel oncogene product in reticuloendotheliosis virus-transformed fibroblasts. Virology 162:377–387

    Article  CAS  PubMed  Google Scholar 

  13. Morrison LE, Boehmelt G, Beug H, Enrietto P (1991) Expression of v-rel in a replication competent virus: transformation and biochemical characterization. Oncogene 6:1657–1666

    CAS  PubMed  Google Scholar 

  14. Boehmelt G, Walker A, Kabrun N, Mellitzer G, Beug H, Zenke M et al (1992) Hormone-regulated v-rel estrogen receptor fusion protein: reversible induction of cell transformation and cellular gene expression. EMBO J 11:4641–4652

    PubMed Central  CAS  PubMed  Google Scholar 

  15. Capobianco AJ, Gilmore TD (1993) A conditional mutant of vRel containing sequences from the human estrogen receptor. Virology 193:160–170

    Article  CAS  PubMed  Google Scholar 

  16. White DW, Roy A, Gilmore TD (1995) The v-Rel oncoprotein blocks apoptosis and proteolysis of IκB-α in transformed chicken spleen cells. Oncogene 10:857–868

    CAS  PubMed  Google Scholar 

  17. White DW, Gilmore TD (1996) Bcl-2 and CrmA have different effects on transformation, apoptosis, and the stability of IκB-α in chicken spleen cells transformed by temperature-sensitive v-Rel oncoproteins. Oncogene 13:891–899

    CAS  PubMed  Google Scholar 

  18. Zong W-X, Farrell M, Bash J, Gélinas C (1997) v-Rel prevents apoptosis in transformed lymphoid cells and blocks TNFα-induced cell death. Oncogene 15:971–980

    Article  CAS  PubMed  Google Scholar 

  19. Madruga J, Briegel K, Diebold S, Boehmelt G, Vogl F, Zenke M (2000) Dendritic cells conditionally transformed by v-relER oncogene express lymphoid marker genes. Immunobiology 202:394–407

    Article  CAS  PubMed  Google Scholar 

  20. Watanabe S, Temin HM (1983) Construction of a helper cell line for avian reticuloendotheliosis virus cloning vectors. Mol Cell Biol 3:2241–2249

    PubMed Central  CAS  PubMed  Google Scholar 

  21. Naviaux RK, Costanzi E, Haas M, Verma IM (1996) The pCL vector system: rapid production of helper-free high-titer, recombinant retroviruses. J Virol 70:5701–5705

    PubMed Central  CAS  PubMed  Google Scholar 

  22. Hawley RG, Lieu FHL, Fong AZC, Hawley TS (1994) Versatile retroviral vectors for potential use in gene therapy. Gene Ther 1:136–138

    CAS  PubMed  Google Scholar 

  23. Mosialos G, Hamer P, Capobianco AJ, Laursen R, Gilmore TD (1991) A protein kinase A recognition sequence is structurally linked to transformation by p59v-rel and cytoplasmic retention of p68c-rel. Mol Cell Biol 11:5867–5877

    PubMed Central  CAS  PubMed  Google Scholar 

  24. Sif S, Capobianco AJ, Gilmore TD (1993) The vRel oncoprotein increases expression from Sp1 site-containing promoters in chicken embryo fibroblasts. Oncogene 8:2501–2509

    CAS  PubMed  Google Scholar 

  25. Rayet B, Fan Y, Gélinas C (2003) Mutations in the v-Rel transactivation domain indicate altered phosphorylation and identify a subset of NF-κB-regulated cell death inhibitors important for v-Rel transforming activity. Mol Cell Biol 23:1520–1533

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  26. White DW, Pitoc G, Gilmore TD (1996) Interaction of the v-Rel oncoprotein with NF-κB and IκB proteins: heterodimers of a transformation-defective v-Rel mutant and NF-κB p52 are functional in vitro and in vivo. Mol Cell Biol 16:1169–1178

    PubMed Central  CAS  PubMed  Google Scholar 

  27. Gilmore TD, Cormier C, Jean-Jacques J, Gapuzan M-E (2001) Malignant transformation of primary chicken spleen cells by human transcription factor c-Rel. Oncogene 20:7098–7103

    Article  CAS  PubMed  Google Scholar 

  28. Starczynowski DT, Reynolds JG, Gilmore TD (2003) Deletion of either C-terminal transactivation subdomain enhances the in vitro transforming activity of human transcription factor REL in chicken spleen cells. Oncogene 22:6928–6936

    Article  CAS  PubMed  Google Scholar 

  29. Gilmore TD, Jean-Jacques J, Richards R, Cormier C, Kim J, Kalaitzidis D (2003) Stable expression of the avian retroviral oncoprotein v-Rel in avian, mouse, and dog cell lines. Virology 316:9–16

    Article  CAS  PubMed  Google Scholar 

  30. Dougherty JP, Temin HM (1986) High mutation rate of a spleen necrosis virus-based retrovirus vector. Mol Cell Biol 6:4387–4395

    PubMed Central  CAS  PubMed  Google Scholar 

  31. Koo HM, Brown AM, Kaufman RJ, Prorock CM, Ron Y, Dougherty JP (1992) A spleen necrosis virus-based retroviral vector which expresses two genes from a dicistronic mRNA. Virology 186:669–675

    Article  CAS  PubMed  Google Scholar 

  32. Koch T, Rossa E, Skold BH, DeVries L (1973) Anatomy of the chicken and domestic birds. Press, Iowa State University

    Google Scholar 

  33. http://tbnranch.com/2012/01/15/chicken-anatomy/

  34. http://www.poultryhub.org/physiology/body-systems/digestive-system/

  35. Enberg I, Klein G, Biovanella BC, Stehlin J, McCormick KJ, Andersson-Anvret M et al (1983) Relationship between the amounts of EBV-DNA and EBNA per cell, clonability and tumorigenicity in two EBV-negative lymphoma lines and their EBV-converted cell lines. Int J Cancer 31:163–169

    Article  Google Scholar 

  36. Wennborg A, Aman P, Saranath D, Pear W, Sümegi J, Klein G (1987) Conversion of the lymphoma cell line "BJAB" by Epstein-Barr virus into phenotypically altered sublines is accompanied by increased c-myc RNA levels. Int J Cancer 40:202–206

    Article  CAS  PubMed  Google Scholar 

  37. Yamamoto N, Takizawa T, Iwanaga Y, Shimizu N, Yamamoto N (2000) Malignant transformation of B lymphoma cell line BJAB by Epstein–Barr virus-encoded small RNAs. FEBS Lett 484:153–158

    Article  CAS  PubMed  Google Scholar 

  38. Ho L, Davis RE, Conne B, Chappuis R, Berczy M, Mhawech P et al (2005) MALT1 and the AP12-MALT1 fusion act between CD40 and IKK and confer NF-κB-dependent proliferative advantage and resistance against FAS-induced cell death in B cells. Blood 105:2891–2899

    Article  CAS  PubMed  Google Scholar 

  39. Ishikawa H, Carrasco D, Claudio E, Ryseck RP, Bravo R (1997) Gastric hyperplasia and increased proliferative responses of lymphocytes in mice lacking the COOH-terminal ankyrin domain of NF-κB2. J Exp Med 186:999–1014

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  40. Ciana P, Neri A, Cappellini C, Cavallo F, Pomati M, Chang C-C et al (1997) Constitutive expression of lymphoma-associated NFKB-2/Lyt-10 proteins is tumorigenic in murine fibroblasts. Oncogene 14:1805–1810

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

Research in the authors’ laboratories on transformation of cells by Rel proteins was supported by NIH grants CA047763 (T.D.G.) and CA054999 (C.G.).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Thomas D. Gilmore .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer Science+Business Media New York

About this protocol

Cite this protocol

Gilmore, T.D., Gélinas, C. (2015). Methods for Assessing the In Vitro Transforming Activity of NF-κB Transcription Factor c-Rel and Related Proteins. In: May, M. (eds) NF-kappa B. Methods in Molecular Biology, vol 1280. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-2422-6_26

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-2422-6_26

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-2421-9

  • Online ISBN: 978-1-4939-2422-6

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics