Skip to main content

A Proposed Essential Gene Discovery Pipeline: A Campylobacter jejuni Case Study

  • Protocol
  • First Online:
Gene Essentiality

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1279))

  • 2376 Accesses

Abstract

Genes required for an organism’s growth and survival are termed essential and represent potential intervention targets. Following in the footsteps of the genomics era, the “next-gen” genomic era provides vast amounts of genetic information. Sequencing of a representative bacterial pathogen genome has been superseded by sequencing of whole strain collections, whether from environmental or clinical sources (Harris et al., Science 327:469–474, 2010; Lewis et al., J Hosp Infect 75:37–41, 2010; Beres et al., Proc Natl Acad Sci U S A 107:4371–4376, 2010; Qi et al., PLoS Pathog 5:e1000580, 2009; He et al., Proc Natl Acad Sci U S A 107:7527–7532, 2010; Barrick et al., Nature 461:1243–1247, 2009; Sheppard et al., Mol Ecol 22:1051–1064, 2013). However, the challenge of using this information to gain biological insight remains. Nonetheless, this information, in combination with experimental data from the literature, can serve as the framework for gaining a better understanding of an organism’s biology. Generic metabolic pathways have long been known, and a number of websites (e.g., KEGG and BioCyc) attempt to map information from genome annotation to metabolic pathways (Kanehisa et al., Nucleic Acids Res 40:D109–D114, 2010; Karp et al., Nucleic Acids Res 33:6083–6089, 2005). Extending this analysis to incorporate metabolic flux models further allows in silico prediction of potential essential genes. Such efforts are of value, either to highlight novel generic antimicrobials or to seek novel treatments for non-paradigm organisms. Such in silico approaches are attractive as they can highlight pathways and genes that would otherwise only be identified by costly and time-consuming laboratory methods.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Harris SR, Feil EJ, Holden MT, Quai MA, Nickerson EK, Chantratita N, Gardete S, Tavares A, Day N, Lindsay JA, Edgeworth JD, de Lencastre H, Parkhill J, Peacock SJ, Bentley SD (2010) Evolution of MRSA during hospital transmission and intercontinental spread. Science 327:469–474

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  2. Lewis T, Loman NJ, Bingle L, Jumaa P, Weinstock GM, Mortiboy D, Pallen MJ (2010) High-throughput whole-genome sequencing to dissect the epidemiology of Acinetobacter baumannii isolates from a hospital outbreak. J Hosp Infect 75:37–41

    Article  CAS  PubMed  Google Scholar 

  3. Beres SB, Carroll RK, Shea PR, Sitkiewicz I, Martinez-Gutierrez JC, Low DE, McGeer A, Willey BM, Green K, Tyrrell GJ, Goldman TD, Feldgarden M, Birren BW, Fofanov Y, Boos J, Wheaton WD, Honisch C, Musser JM (2010) Molecular complexity of successive bacterial epidemics deconvoluted by comparative pathogenomics. Proc Natl Acad Sci U S A 107:4371–4376

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  4. Qi W, Kaser M, Roltgen K, Yeboah-Manu D, Pluschke G (2009) Genomic diversity and evolution of Mycobacterium ulcerans revealed by next-generation sequencing. PLoS Pathog 5:e1000580

    Article  PubMed Central  PubMed  Google Scholar 

  5. He M, Sebaihia M, Lawley TD, Stabler RA, Dawson LF, Martin MJ, Holt KE, Seth-Smith HM, Quail MA, Rance R, Brooks K, Churcher C, Harris D, Bentley SD, Burrows C, Clark L, Corton C, Murray V, Rose G, Thurston S, van Tonder A, Walker D, Wren BW, Dougan G, Parkhill J (2010) Evolutionary dynamics of Clostridium difficile over short and long time scales. Proc Natl Acad Sci U S A 107:7527–7532

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  6. Barrick JE, Yu DS, Yoon SH, Jeong H, Oh TK, Schneider D, Lenski RE, Kim JF (2009) Genome evolution and adaptation in a long-term experiment with Escherichia coli. Nature 461:1243–1247

    Article  CAS  PubMed  Google Scholar 

  7. Sheppard SK, Didelot X, Jolley KA, Darling AE, Pascoe B, Meric G, Kelly DJ, Cody A, Colles FM, Strachan NJ, Ogden ID, Forbes K, French NP, Carter P, Miller WG, McCarthy ND, Owen R, Litrup E, Egholm M, Affourtit JP, Bentley SD, Parkhill J, Maiden MC, Falush D (2013) Progressive genome-wide introgression in agricultural Campylobacter coli. Mol Ecol 22:1051–1064

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  8. Kanehisa M, Goto S, Sato Y, Furumichi M, Tanabe M (2012) KEGG for integration and interpretation of large-scale molecular data sets. Nucleic Acids Res 40:D109–D114

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  9. Karp PD, Ouzounis CA, Moore-Kochlacs C, Goldovsky L, Kaipa P, Ahren D, Tsoka S, Darzentas N, Kunin V, Lopez-Bigas N (2005) Expansion of the BioCyc collection of pathway/genome databases to 160 genomes. Nucleic Acids Res 33:6083–6089

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  10. Metris A, Reuter M, Gaskin DJ, Baranyi J, van Vliet AH (2011) In vivo and in silico determination of essential genes of Campylobacter jejuni. BMC Genomics 12:535

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  11. Kauffman KJ, Prakash P, Edwards JS (2003) Advances in flux balance analysis. Curr Opin Biotech 14:491–496

    Article  CAS  PubMed  Google Scholar 

  12. Joyce AR, Palsson BO (2008) Predicting gene essentiality using genome-scale in silico models. Methods Mol Biol 416:433–457

    Article  CAS  PubMed  Google Scholar 

  13. Bochner BR (2009) Global phenotypic characterization of bacteria. FEMS Microbiol Rev 33:191–205

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  14. Parkhill J, Wren BW, Mungall K, Ketley JM, Churcher C, Basham D, Chillingworth T, Davies RM, Feltwell T, Holroyd S, Jagels K, Karlyshev AV, Moule S, Pallen MJ, Penn CW, Quail MA, Rajandream MA, Rutherford KM, van Vliet AH, Whitehead S, Barrell BG (2000) The genome sequence of the food-borne pathogen Campylobacter jejuni reveals hypervariable sequences. Nature 403:665–668

    Article  CAS  PubMed  Google Scholar 

  15. Tomb JF, White O, Kerlavage AR, Clayton RA, Sutton GG, Fleischmann RD, Ketchum KA, Klenk HP, Gill S, Dougherty BA, Nelson K, Quackenbush J, Zhou L, Kirkness EF, Peterson S, Loftus B, Richardson D, Dodson R, Khalak HG, Glodek A, McKenney K, Fitzegerald LM, Lee N, Adams MD, Hickey EK, Berg DE, Gocayne JD, Utterback TR, Peterson JD, Kelley JM, Cotton MD, Weidman JM, Fujii C, Bowman C, Watthey L, Wallin E, Hayes WS, Borodovsky M, Karp PD, Smith HO, Fraser CM, Venter JC (1997) The complete genome sequence of the gastric pathogen Helicobacter pylori. Nature 388:539–547

    Article  CAS  PubMed  Google Scholar 

  16. Thiele I, Vo TD, Price ND, Palsson BO (2005) Expanded metabolic reconstruction of Helicobacter pylori (iIT341 GSM/GPR): an in silico genome-scale characterization of single- and double-deletion mutants. J Bacteriol 187:5818–5830

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  17. Feist AM, Henry CS, Reed JL, Krummenacker M, Joyce AR, Karp PD, Broadbelt LJ, Hatzimanikatis V, Palsson BO (2007) A genome-scale metabolic reconstruction for Escherichia coli K-12 MG1655 that accounts for 1260 ORFs and thermodynamic information. Mol Syst Biol 3:121

    Article  PubMed Central  PubMed  Google Scholar 

  18. Kelly DJ (2008) Complexity and versality in the physiology and metabolism of Campylobacter jejuni. In: Nachamkin I, Szymanski CM, Blaser MJ (eds) Campylobacter, 3rd edn. American Society for Microbiology, Washington, DC, p 41

    Google Scholar 

  19. Line JE, Hiett KL, Guard-Bouldin J, Seal BS (2010) Differential carbon source utilization by Campylobacter jejuni 11168 in response to growth temperature variation. J Microbiol Methods 80:198–202

    Article  CAS  PubMed  Google Scholar 

  20. Hoffman PS, Goodman TG (1982) Respiratory physiology and energy-conservation efficiency of Campylobacter jejuni. J Bacteriol 150:319–326

    CAS  PubMed Central  PubMed  Google Scholar 

  21. Leach S, Harvey P, Wali R (1997) Changes with growth rate in the membrane lipid composition of and amino acid utilization by continuous cultures of Campylobacter jejuni. J Appl Microbiol 82:631–640

    Article  CAS  PubMed  Google Scholar 

  22. Mohammed KA, Miles RJ, Halablab MA (2004) The pattern and kinetics of substrate metabolism of Campylobacter jejuni and Campylobacter coli. Lett Appl Microbiol 39:261–266

    Article  CAS  PubMed  Google Scholar 

  23. Westfall HN, Rollins DM, Weiss E (1986) Substrate utilization by Campylobacter jejuni and Campylobacter coli. Appl Environ Microbiol 52:700–705

    CAS  PubMed Central  PubMed  Google Scholar 

  24. Parrish JR, Yu J, Liu G, Hines JA, Chan JE, Mangiola BA, Zhang H, Pacifico S, Fotouhi F, DiRita VJ, Ideker T, Andrews P, Finley RL Jr (2007) A proteome-wide protein interaction map for Campylobacter jejuni. Genome Biol 8:R130

    Article  PubMed Central  PubMed  Google Scholar 

  25. Stahl M, Stintzi A (2011) Identification of essential genes in C. jejuni genome highlights 5 hyper-variable plasticity regions. Funct Integr Genomics 11:241–257

    Article  CAS  PubMed  Google Scholar 

  26. Gundogdu O, Bentley SD, Holden MT, Parkhill J, Dorrell N, Wren BW (2007) Re-annotation and re-analysis of the Campylobacter jejuni NCTC11168 genome sequence. BMC Genomics 8:162

    Article  PubMed Central  PubMed  Google Scholar 

  27. Arakaki AK, Tian W, Skolnick J (2006) High precision multi-genome scale reannotation of enzyme function by EFICAz. BMC Genomics 7:315

    Article  PubMed Central  PubMed  Google Scholar 

  28. Henry CS, DeJongh M, Best AA, Frybarger PM, Linsay B, Stevens RL (2010) High-throughput generation, optimization and analysis of genome-scale metabolic models. Nat Biotechnol 28:977–982

    Article  CAS  PubMed  Google Scholar 

  29. Claudel-Renard C, Chevalet C, Faraut T, Kahn D (2003) Enzyme-specific profiles for genome annotation: PRIAM. Nucleic Acids Res 31:6633–6639

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  30. Gundogdu O, Mills DC, Elmi A, Martin MJ, Wren BW, Dorrell N (2011) The Campylobacter jejuni transcriptional regulator Cj1556 plays a role in the oxidative and aerobic (O2) stress response and is important for bacterial survival in vivo. J Bacteriol 193:4238–4249

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  31. Schellenberger J, Que R, Fleming RM, Thiele I, Orth JD, Feist AM, Zielinski DC, Bordbar A, Lewis NE, Rahmanian S, Kang J, Hyduke DR, Palsson BO (2011) Quantitative prediction of cellular metabolism with constraint-based models: the COBRA Toolbox v2.0. Nat Protoc 6:1290–1307

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  32. Palsson BO (ed) (2006) Systems biology. Cambridge University Press, Cambridge

    Google Scholar 

  33. Satish Kumar V, Dasika MS, Maranas CD (2007) Optimization based automated curation of metabolic reconstructions. BMC Bioinform 8:212

    Article  Google Scholar 

  34. Bautista EJ, Zinski J, Szczepanek SM, Johnson EL, Tulman ER, Ching WM, Geary SJ, Srivastava R (2013) Semi-automated curation of metabolic models via flux balance analysis: a case study with Mycoplasma gallisepticum. PLoS Comput Biol 9:e1003208

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  35. Raghunathan A, Reed J, Shin S, Palsson BO, Daefler S (2009) Constraint-based analysis of metabolic capacity of Salmonella typhimurium during host-pathogen interaction. BMC Syst Biol 3:38

    Article  PubMed Central  PubMed  Google Scholar 

  36. Jeong H, Mason SP, Barabasi AL, Oltvai ZN (2001) Lethality and centrality in protein networks. Nature 411:41–42

    Article  CAS  PubMed  Google Scholar 

  37. Maslov S, Sneppen K (2002) Specificity and stability in topology of protein networks. Science 296:910–913

    Article  CAS  PubMed  Google Scholar 

  38. Yu H, Braun P, Yildirim MA, Lemmens I, Venkatesan K, Sahalie J, Hirozane-Kishikawa T, Gebreab F, Li N, Simonis N, Hao T, Rual JF, Dricot A, Vazquez A, Murray RR, Simon C, Tardivo L, Tam S, Svrzikapa N, Fan C, de Smet AS, Motyl A, Hudson ME, Park J, Xin X, Cusick ME, Moore T, Boone C, Snyder M, Roth FP, Barabasi AL, Tavernier J, Hill DE, Vidal M (2008) High-quality binary protein interaction map of the yeast interactome network. Science 322:104–110

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  39. Smoot ME, Ono K, Ruscheinski J, Wang PL, Ideker T (2011) Cytoscape 2.8: new features for data integration and network visualization. Bioinformatics 27:431–432

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  40. Gao J, Tarcea VG, Karnovsky A, Mirel BR, Weymouth TE, Beecher CW, Cavalcoli JD, Athey BD, Omenn GS, Burant CF, Jagadish HV (2010) Metscape: a Cytoscape plug-in for visualizing and interpreting metabolomic data in the context of human metabolic networks. Bioinformatics 26:971–973

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  41. Pico AR, Kelder T, van Iersel MP, Hanspers K, Conklin BR, Evelo C (2008) WikiPathways: pathway editing for the people. PLoS Biol 6:e184

    Article  PubMed Central  PubMed  Google Scholar 

  42. Cerami EG, Gross BE, Demir E, Rodchenkov I, Babur O, Anwar N, Schultz N, Bader GD, Sander C (2011) Pathway Commons, a web resource for biological pathway data. Nucleic Acids Res 39:D685–D690

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  43. Ducati RG, Basso LA, Santos DS (2007) Mycobacterial shikimate pathway enzymes as targets for drug design. Curr Drug Targets 8:423–435

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgement

The authors wish to thanks members of both the Computational Microbiology Research Group and Campylobacter Research Group at IFR for helpful discussions. We gratefully acknowledge the support of the Biotechnology and Biological Sciences Research Council (BBSRC) via the BBSRC Institute Strategic Program (IFR/08/3 and BB/J004529/1).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Aline Metris .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer Science+Business Media New York

About this protocol

Cite this protocol

Reuter, M., Gaskin, D.J.H., Metris, A. (2015). A Proposed Essential Gene Discovery Pipeline: A Campylobacter jejuni Case Study. In: Lu, L. (eds) Gene Essentiality. Methods in Molecular Biology, vol 1279. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-2398-4_11

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-2398-4_11

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-2397-7

  • Online ISBN: 978-1-4939-2398-4

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics