Skip to main content

Melanoma and Other Skin Lesion Detection Using Smart Handheld Devices

  • Protocol
  • First Online:

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1256))

Abstract

Smartphones of the latest generation featuring advanced multicore processors, dedicated microchips for graphics, high-resolution cameras, and innovative operating systems provide a portable platform for running sophisticated medical screening software and delivering point-of-care patient diagnostic services at a very low cost. In this chapter, we present a smartphone digital dermoscopy application that can analyze high-resolution images of skin lesions and provide the user with feedback about the likelihood of malignancy. The same basic procedure has been adapted to evaluate other skin lesions, such as the flesh-eating bacterial disease known as Buruli ulcer. When implemented on the iPhone, the accuracy and speed achieved by this application are comparable to that of a desktop computer, demonstrating that smartphone applications can combine portability and low cost with high performance. Thus, smartphone-based systems can be used as assistive devices by primary care physicians during routine office visits, and they can have a significant impact in underserved areas and in developing countries, where health-care infrastructure is limited.

This is a preview of subscription content, log in via an institution.

Buying options

Protocol
USD   49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Springer Nature is developing a new tool to find and evaluate Protocols. Learn more

Notes

  1. 1.

    IEEE-EMBS Special Topics Conference on Point-of-Care Healthcare Technologies, Bangalore, India, 2013, http://pocht.embs.org/2013/

  2. 2.

    The RGB color space uses separate channels for red, green, and blue color intensity, HSV uses separate channels for hue, saturation, and brightness, whereas LAB uses one channel for luminance L, and two color channels, A and B, that correspond to perceived intensity of complementary colors.

  3. 3.

    http://www.dermoscopy.org/atlas/cd-review.asp

  4. 4.

    The iPhone 3G features a single core 0.6 GHz ARM Cortex processor, 0.25 GB of RAM memory, and quad core 150 MHz PowerVR SGX535 GPU with screen resolution of 164 ppi, whereas the latest model iPhone 5s features a dual core 1.3 GHz ARM Cyclone (64 bit), 1 GB of RAM memory, and quad core 300 MHz, PowerVR Series 6 Rogue G6430 GPU with screen resolution of 325 ppi (source: http://goo.gl/88YB3U).

References

  1. Argenziano G, Soyer HP, Chimenti S, Talamini R, Corona R, Sera F et al (2003) Dermoscopy of pigmented skin lesions: results of a consensus meeting via the Internet. J Am Acad Dermatol 48(5):679–693

    Article  Google Scholar 

  2. Argenziano G, Soyer HP, De Giorgi V, Piccolo D, Carli P, Delfino M (2002) Dermoscopy: a tutorial. EDRA, Medical Publishing & New Media, Milan

    Google Scholar 

  3. Bafounta ML, Beauchet A, Aegerter P et al (2001) Is dermoscopy (epiluminescence microscopy) useful for the diagnosis of melanoma? Arch Dermatol 137:1343–1350

    Article  CAS  Google Scholar 

  4. Kittler H, Pehamberger H, Wolff K et al (2002) Diagnostic accuracy of dermoscopy. Lancet Oncol 3:159–165

    Article  CAS  Google Scholar 

  5. Menzies SW (2013) Evidence-based dermoscopy. Dermatol Clin 31(4):521–524

    Article  CAS  Google Scholar 

  6. Menzies SW, Bischof L, Talbot H, Gutenev A et al (2005) The performance of SolarScan: an automated dermoscopy image analysis instrument for the diagnosis of primary melanoma. Arch Dermatol 141(11):1388–1396

    Article  Google Scholar 

  7. ACS: American Cancer Society, Cancer Facts & Figures 2013. http://goo.gl/rgD56, Accessed 31 Sep 2013

  8. Rogers HW, Weinstock MA, Harris AR et al (2010) Incidence estimate of nonmelanoma skin cancer in the United States, 2006. Arch Dermatol 146(3):283–287

    Article  Google Scholar 

  9. Parkin D, Bray F, Ferlay J, Pisani P (2005) Global cancer statistics, 2002. CA Cancer J Clin 55(2):74–108

    Article  Google Scholar 

  10. Thorn M, Penten F, Johansson B et al (1998) Rapid increase in diagnosis of cutaneous melanoma in situ in Sweden, 1968–1992. Cancer Detect Prev 22:430

    Article  CAS  Google Scholar 

  11. Pollitt R, Geller A, Brooks D, Johnson T, Park E, Swetter S (2009) Efficacy of skin self-examination practices for early melanoma detection. Cancer Epidemiol Biomarkers Prev 18:3018–3023

    Article  Google Scholar 

  12. Brady MS, Oliveria SA, Christos PJ et al (2000) Patterns of detection in patients with cutaneous melanoma. Cancer 89(2):342–347

    Article  CAS  Google Scholar 

  13. Epstein DS, Lange JR, Gruber SB, Mofid M, Koch SE (1999) Is physician detection associated with thinner melanomas? JAMA 281(7):640–643

    Article  CAS  Google Scholar 

  14. McGuire ST, Secrest AM, Andrulonis R, Ferris LK (2011) Surveillance of patients for early detection of melanoma: patterns in dermatologist vs patient discovery. Arch Dermatol 147(6):673–678

    Article  Google Scholar 

  15. AAD: American Academy of Dermatology. How to perform a self-exam. http://goo.gl/6D9E1d. Accessed 27 Oct 2013

  16. Pariser RJ, Pariser DM (1987) Primary care physicians errors in handling cutaneous disorders. J Am Acad Dermatol 17:239–245

    Article  CAS  Google Scholar 

  17. Cascinelli N, Ferrario M, Tonelli T, Leo E (1987) A possible new tool for clinical diagnosis of melanoma: the computer. J Am Acad Dermatol 16(2):361–367

    Article  CAS  Google Scholar 

  18. Stolz W, Riemann A, Cognetta AB, Pillet L, Abmayr W, Holzel D et al (1994) Abcd rule of dermatoscopy: a new practical method for early recognition of malignant-melanoma. Eur J Dermatol 4(7):521–527

    Google Scholar 

  19. Nachbar F, Stolz W, Merkle T, Cognetta A, Vogt T, Landthaler M, Bilek P, Braun-Falco O, Plewig G (1994) The ABCD rule of dermatoscopy: high prospective value in the diagnosis of doubtful melanocytic skin lesions. J Am Acad Dermatol 30(4):551–559

    Article  CAS  Google Scholar 

  20. Menzies SW, Ingvar C, Crotty KA, McCarthy WH (1996) Frequency and morphologic characteristics of invasive melanomas lacking specific surface microscopic features. Arch Dermatol 132(10):1178

    Article  CAS  Google Scholar 

  21. Argenziano G, Fabbrocini G, Carli P, De Giorgi V, Sammarco E, Delfino M (1998) Epiluminescence microscopy for the diagnosis of doubtful melanocytic skin lesions: comparison of the ABCD rule of dermatoscopy and a new 7-point checklist based on pattern analysis. Arch Dermatol 134(12):1563

    Article  CAS  Google Scholar 

  22. Johr RH (2002) Dermoscopy: alternative melanocytic algorithms—the ABCD rule of dermatoscopy, menzies scoring method, and 7-point checklist. Clin Dermatol 20(3):240–247

    Article  Google Scholar 

  23. Silveira M, Nascimento JC, Marques JS, Marçal AR, Mendonça T, Yamauchi S et al (2009) Comparison of segmentation methods for melanoma diagnosis in dermoscopy images. IEEE J Sel Top Signal Process 3(1):35–45

    Article  Google Scholar 

  24. Wang H, Chen X, Moss RH, Stanley RJ, Stoecker WV, Celebi ME et al (2010) Watershed segmentation of dermoscopy images using a watershed technique. Skin Res Technol 16(3):378–384

    Google Scholar 

  25. Celebi ME, Kingravi HA, Uddin B, Iyatomi H, Aslandogan YA, Stoecker WV, Moss RH (2007) A methodological approach to the classification of dermoscopy images. Comput Med Imaging Graph 31(6):362–373

    Article  Google Scholar 

  26. Iyatomi H, Oka H, Celebi ME, Hashimoto M, Hagiwara M, Tanaka M, Ogawa K (2008) An improved internet-based melanoma screening system with dermatologist-like tumor area extraction algorithm. Comput Med Imaging Graph 32(7):566–579

    Article  Google Scholar 

  27. Nascimento JC, Marques JS (2005) Adaptive snakes using the EM algorithm. IEEE Trans Image Process 14(11):1678–1686

    Article  Google Scholar 

  28. Seidenari S, Pellacani G, Grana C (2005) Pigment distribution in melanocytic lesion images: a digital parameter to be employed for computer‐aided diagnosis. Skin Res Technol 11(4):236–241

    Article  CAS  Google Scholar 

  29. Situ N (2011) Melanoma recognition using mid-level features and high-level annotations. Doctoral dissertation, University of Houston

    Google Scholar 

  30. Situ N, Yuan X, Chen J, Zouridakis G (2008) Malignant melanoma detection by bag-of-features classification. In 30th annual international conference of the IEEE Engineering in Medicine and Biology Society, 2008 (EMBS 2008). IEEE, pp 3110–3113

    Google Scholar 

  31. Zhou H, Chen M, Rehg JM (2009) Dermoscopic interest point detector and descriptor. In IEEE international symposium on biomedical imaging: from nano to macro, 2009. ISBI'09. IEEE, pp 1318–1321

    Google Scholar 

  32. Celebi ME, Aslandogan YA, Bergstresser PR (2005) Unsupervised border detection of skin lesion images. In International conference on information technology: coding and computing, 2005 (ITCC 2005), vol 2. IEEE, pp 123–128

    Google Scholar 

  33. Hoffmann K, Gambichler T, Rick A, Kreutz M, Anschuetz M, Grünendick T et al (2003) Diagnostic and neural analysis of skin cancer (DANAOS). A multicentre study for collection and computer‐aided analysis of data from pigmented skin lesions using digital dermoscopy. Br J Dermatol 149(4):801–809

    Article  CAS  Google Scholar 

  34. Rubegni P, Burroni M, Cevenini G, Perotti R, Dell'Eva G, Barbini P et al (2002) Digital dermoscopy analysis and artificial neural network for the differentiation of clinically atypical pigmented skin lesions: a retrospective study. J Investig Dermatol 119(2):471–474

    Article  CAS  Google Scholar 

  35. Serrano C, Acha B (2009) Pattern analysis of dermoscopic images based on Markov random fields. Pattern Recognit 42(6):1052–1057

    Article  Google Scholar 

  36. Tanaka T, Torii S, Kabuta I, Shimizu K, Tanaka M (2008) Pattern classification of nevus with texture analysis. IEEE Trans Elect Electron Eng 3(1):143–150

    Article  Google Scholar 

  37. Andreassi L, Perotti R, Rubegni P, Burroni M, Cevenini G, Biagioli M et al (1999) Digital dermoscopy analysis for the differentiation of atypical nevi and early melanoma: a new quantitative semiology. Arch Dermatol 135(12):1459

    Article  CAS  Google Scholar 

  38. Green A, Martin N, McKenzie G, Pfitzner J, Quintarelli F, Thomas BW et al (1991) Computer image analysis of pigmented skin lesions. Melanoma Res 1(4):231–236

    Article  CAS  Google Scholar 

  39. Green A, Martin N, Pfitzner J, O’Rourke M, Knight N (1994) Computer image analysis in the diagnosis of melanoma. J Am Acad Dermatol 31(6):958–964

    Article  CAS  Google Scholar 

  40. Ercal F, Chawla A, Stoecker WV, Lee HC, Moss RH (1994) Neural network diagnosis of malignant melanoma from color images. IEEE Trans Biomed Eng 41(9):837–845

    Article  CAS  Google Scholar 

  41. Rubegni P, Cevenini G, Burroni M, Perotti R, Dell'Eva G, Sbano P et al (2002) Automated diagnosis of pigmented skin lesions. Int J Cancer 101(6):576–580

    Article  CAS  Google Scholar 

  42. Blum A, Luedtke H, Ellwanger U, Schwabe R, Rassner G, Garbe C (2004) Digital image analysis for diagnosis of cutaneous melanoma. Development of a highly effective computer algorithm based on analysis of 837 melanocytic lesions. Br J Dermatol 151(5):1029–1038

    Article  CAS  Google Scholar 

  43. Ganster H, Pinz P, Rohrer R, Wildling E, Binder M, Kittler H (2001) Automated melanoma recognition. IEEE Trans Med Imaging 20(3):233–239

    Article  CAS  Google Scholar 

  44. Caetano Ruela AM (2012) What is the role of color in dermoscopy analysis? Master of Science Thesis, Biomedical Engineering, Instituto Superior Técnico, Lisbon, Portugal, 2012

    Google Scholar 

  45. Elbaum M, Kopf AW, Rabinovitz HS, Langley RG, Kamino H, Mihm MC Jr et al (2001) Automatic differentiation of melanoma from melanocytic nevi with multispectral digital dermoscopy: a feasibility study. J Am Acad Dermatol 44(2):207–218

    Article  CAS  Google Scholar 

  46. Monheit G, Cognetta AB, Ferris L, Rabinovitz H, Gross K, Martini M et al (2011) The performance of MelaFind: a prospective multicenter study. Arch Dermatol 147(2):188

    Article  Google Scholar 

  47. Moncrieff M, Cotton S, Claridge E, Hall P (2002) Spectrophotometric intracutaneous analysis: a new technique for imaging pigmented skin lesions. Br J Dermatol 146(3):448–457

    Article  CAS  Google Scholar 

  48. Karargyris A, Karargyris O, Pantelopoulos A (2012) DERMA/care: an advanced image-processing mobile application for monitoring skin cancer. In IEEE 24th international conference on tools with artificial intelligence (ICTAI), vol 2, 2012. IEEE, pp 1–7

    Google Scholar 

  49. Doukas C, Stagkopoulos P, Kiranoudis CT, Maglogiannis I (2012) Automated skin lesion assessment using mobile technologies and cloud platforms. In annual international conference of the IEEE Engineering in Medicine and Biology Society (EMBC), 2012. IEEE, pp 2444–2447

    Google Scholar 

  50. Celi LA, Sarmenta L, Rotberg J, Marcelo A, Clifford G (2009) Mobile care (moca) for remote diagnosis and screening. J Health Inform Dev Ctries 3(1):17

    Google Scholar 

  51. Yuan X, Situ N, Zouridakis G (2008) Automatic segmentation of skin lesion images using evolution strategies. Biomed Signal Process Control 3:220–228

    Article  Google Scholar 

  52. Situ N, Wadhawan T, Hu R, Lancaster K, Yuan X, Zouridakis G (2011). Evaluating sampling strategies of dermoscopic interest points. In IEEE international symposium on biomedical imaging: from nano to macro, 2011. IEEE, pp 109–112

    Google Scholar 

  53. Yuan X, Situ N, Zouridakis A (2009) A narrow band graph partitioning method for skin lesion segmentation. Pattern Recognit 42(6):1017–1028

    Article  Google Scholar 

  54. Hu R, Queen CM, Zouridakis G (2012) Lesion border detection in Buruli ulcer images. In annual international conference of the IEEE Engineering in Medicine and Biology Society (EMBC), 2012. IEEE, pp 5380–5383

    Google Scholar 

  55. Wadhawan T, Situ N, Rui H, Lancaster K, Yuan X, Zouridakis G (2011) Implementation of the 7-point checklist for melanoma detection on smart handheld devices. In annual international conference of the IEEE Engineering in Medicine and Biology Society, EMBC, 2011. IEEE, pp 3180–3183

    Google Scholar 

  56. Zouridakis G, Yuan X, Chen J, Stotzer E, Wu Y (2012) Device and software for screening the skin. University of Houston, July 2012. US 08213695

    Google Scholar 

  57. Zouridakis G, Yuan X, Chen J, Stotzer E, Wu Y (2008) Device and software for screening the skin, September 2008. US 20080226151-A1

    Google Scholar 

  58. Wu Y, Chen J, Yuan X, Zouridakis G (2009) A programmable DSP development platform for automated detection of melanoma. Int J Intel Comput Med Sci Image Process 3(1):1–8

    Google Scholar 

  59. Hu, R (2013) Automated recognition of Buruli ulcer images on smart handheld devices. Doctoral dissertation, University of Houston

    Google Scholar 

  60. Lancaster K, Zouridakis G (2014) A software framework to facilitate development of image analysis applications on mobile and embedded devices. PECCS 2014: International conference on pervasive and embedded computing and communication systems, 7–9 Jan 2014, Lisbon, Portugal

    Google Scholar 

  61. Wadhawan T, Situ N, Lancaster K, Yuan X, Zouridakis G (2011) SkinScan©: a portable library for melanoma detection on handheld devices. In IEEE International Symposium on biomedical imaging: from nano to macro, 2011. IEEE, pp 133–136

    Google Scholar 

  62. Hu R, Queen CM, Zouridakis G (2013) Detection of Buruli ulcer disease: preliminary results with dermoscopic images on smart handheld devices. In Point-of-Care Healthcare Technologies (PHT), 2013 IEEE. IEEE, pp 168–171

    Google Scholar 

  63. Johnson PD, Azuolas J, Lavender CJ, Wishart E, Stinear TP, Hayman JA et al (2007) Mycobacterium ulcerans in mosquitoes captured during outbreak of Buruli ulcer, southeastern Australia. Emerg Infect Dis 13(11):1653

    Article  Google Scholar 

  64. Gonzalez R, Woods R (2002) Digital image processing. Prentice Hall, Upper Saddle River, NJ, pp 349–408

    Google Scholar 

  65. Tukey J (1977) Exploratory data analysis. Addison-Wesley, Menola Park, CA

    Google Scholar 

  66. Huang T, Yang G, Tang G (1979) A fast two-dimensional median filtering algorithm. IEEE Trans Acoust Speech Signal Process 27(1):13–18

    Article  Google Scholar 

  67. Huang PW, Lai YH (2010) Effective segmentation and classification for HCC biopsy images. Pattern Recognit 43(4):1550–1563

    Article  Google Scholar 

  68. Acharya T, Ray AK (2005) Image processing: principles and applications. Wiley-Interscience, New York

    Book  Google Scholar 

  69. Fries R, Modestino J (1979) Image enhancement by stochastic homomorphic filtering. IEEE Trans Acoust Speech Signal Process 27(6):625–637

    Article  Google Scholar 

  70. Zouridakis G, Doshi M, Mullani N (2004) Early diagnosis of skin cancer based on segmentation and measurement of vascularization and pigmentation in nevoscope images. In 26th annual international conference of the IEEE Engineering in Medicine and Biology Society, 2004. IEMBS’04, vol 1. IEEE, pp 1593–1596

    Google Scholar 

  71. Zouridakis G, Doshi M, Duvic M, Mullani NA (2005) Transillumination imaging for early skin cancer detection. Biomedical Imaging Lab, Department of Computer Science, University of Houston, Houston, TX. http://goo.gl/NPkLBp

  72. Song B, Chan T (2002) A fast algorithm for level set based optimization. UCLA Cam Report, 02-68

    Google Scholar 

  73. Sapiro G (2000) Segmenting skin lesions with partial-differential-equations-based image processing algorithms. IEEE Trans Med Imaging 19(7):763–767

    Article  Google Scholar 

  74. Erkol B, Moss RH, Joe Stanley R, Stoecker WV, Hvatum E (2005) Automatic lesion boundary detection in dermoscopy images using gradient vector flow snakes. Skin Res Technol 11(1):17–26

    Article  Google Scholar 

  75. Kass M, Witkin A, Terzopoulos D (1988) Snakes: active contour models. Int J Comput Vision 1(4):321–331

    Article  Google Scholar 

  76. Ridler TW, Calvard S (1978) Picture thresholding using an iterative selection method. IEEE Trans Syst Man Cybern 8(8):630–632

    Article  Google Scholar 

  77. Qureshi S (2005) Embedded image processing on the TMS320C6000TM DSP: examples in code composer studioTM and MATLAB. Springer, New York

    Google Scholar 

  78. Bezdek JC (1981) Pattern recognition with fuzzy objective function algorithms. Kluwer Academic Publishers, Norwell

    Book  Google Scholar 

  79. Dunn JC (1973) A fuzzy relative of the ISODATA process and its use in detecting compact well-separated clusters. J Cybern 3(3):32–57

    Article  Google Scholar 

  80. Chan TF, Vese LA (2001) Active contours without edges. IEEE Trans Image Process 10(2):266–277

    Article  CAS  Google Scholar 

  81. Chan TF, Sandberg BY, Vese LA (2000) Active contours without edges for vector-valued images. J Vis Commun Image Represent 11(2):130–141

    Article  Google Scholar 

  82. Ramlakhan K, Shang Y (2011) A mobile automated skin lesion classification system. In 23rd IEEE international conference on tools with artificial intelligence (ICTAI), 2011. IEEE, pp 138–141

    Google Scholar 

  83. Shapiro LG, Stockman GC (2001) Computer vision. Prentice Hall, Upper Saddle River, NJ

    Google Scholar 

  84. Pehamberger H, Steiner A, Wolff K (1987) In vivo epiluminescence microscopy of pigmented skin lesions. I. Pattern analysis of pigmented skin lesions. J Am Acad Dermatol 17(4):571–583

    Article  CAS  Google Scholar 

  85. Situ N, Yuan X, Zouridakis G, Mullani N (2007) Automatic segmentation of skin lesion images using evolutionary strategy. In IEEE international conference on image processing, 2007 (ICIP 2007), vol 6. IEEE, pp VI–277

    Google Scholar 

  86. Stollnitz EJ, DeRose AD, Salesin DH (1995) Wavelets for computer graphics: a primer. 1. IEEE Comput Graph Appl 15(3):76–84

    Article  Google Scholar 

  87. Marghoob AA, Swindle LD, Moricz CZ, Sanchez Negron FA, Slue B, Halpern AC, Kopf AW (2003) Instruments and new technologies for the in vivo diagnosis of melanoma. J Am Acad Dermatol 49(5):777–797

    Article  Google Scholar 

  88. Binder M, Schwarz M, Winkler A, Steiner A, Kaider A, Wolff K, Pehamberger H (1995) Epiluminescence microscopy: a useful tool for the diagnosis of pigmented skin lesions for formally trained dermatologists. Arch Dermatol 131(3):286

    Article  CAS  Google Scholar 

  89. Ojala T, Pietikainen M, Maenpaa T (2002) Multiresolution gray-scale and rotation invariant texture classification with local binary patterns. IEEE Trans Pattern Anal Mach Intell 24(7):971–987

    Article  Google Scholar 

  90. Van De Sande KE, Gevers T, Snoek CG (2010) Evaluating color descriptors for object and scene recognition. IEEE Trans Pattern Anal Mach Intell 32(9):1582–1596

    Article  Google Scholar 

  91. Veropoulos K, Campbell C, Cristianini N (1999) Controlling the sensitivity of support vector machines. In Proceedings of the international joint conference on artificial intelligence, vol 1999. pp 55–60

    Google Scholar 

  92. Wasikowski M, Chen XW (2010) Combating the small sample class imbalance problem using feature selection. IEEE Trans Knowl Data Eng 22(10):1388–1400

    Article  Google Scholar 

  93. Forman G, Cohen I (2004) Learning from little: comparison of classifiers given little training. In: Knowledge discovery in databases: PKDD 2004. Springer, Berlin, pp 161–172

    Chapter  Google Scholar 

  94. Cui YJ, Davis S, Cheng CK, Bai X (2004) A study of sample size with neural network. In Proceedings of 2004 international conference on machine learning and cybernetics, 2004, vol 6. IEEE, pp 3444–3448

    Google Scholar 

  95. Rezze GG, Sá BCSD, Neves RI (2006) Dermoscopy: the pattern analysis. An Bras Dermatol 81(3):261–268

    Article  Google Scholar 

  96. WHO, World Health Organization: Buruli ulcer disease, Fact sheet N 199, Revised Mar 2007

    Google Scholar 

  97. Boleira M, Lupi O, Lehman L, Asiedu KB, Kiszewski AE (2010) Buruli ulcer. An Bras Dermatol 85(3):281–301

    Article  Google Scholar 

  98. Debacker M, Aguiar J, Steunou C, Zinsou C, Meyers WM, Guédénon A et al (2004) Mycobacterium ulcerans disease (Buruli ulcer) in rural hospital, Southern Benin, 1997–2001. Emerg Infect Dis 10(8):1391

    Article  Google Scholar 

  99. Drummond C, Butler JR (2004) Mycobacterium ulcerans treatment costs, Australia. Emerg Infect Dis 10(6):1038

    Article  Google Scholar 

  100. Kubat M, Holte R, Matwin S (1997) Learning when negative examples abound. In: Machine learning: ECML-97. Springer, Berlin, pp 146–153

    Chapter  Google Scholar 

  101. Leung T, Malik J (2001) Representing and recognizing the visual appearance of materials using three-dimensional textons. Int J Comput Vision 43(1):29–44

    Article  Google Scholar 

  102. Nowak E, Jurie F, Triggs B (2006) Sampling strategies for bag-of-features image classification. In: Computer vision–ECCV 2006. Springer, Berlin, pp 490–503

    Chapter  Google Scholar 

  103. Lowe DG (2004) Distinctive image features from scale-invariant keypoints. Int J Comput Vision 60(2):91–110

    Article  Google Scholar 

  104. Parikh D, Zitnick CL, Chen T (2008) Determining patch saliency using low-level context. In: Computer vision–ECCV 2008. Springer, Berlin, pp 446–459

    Chapter  Google Scholar 

  105. Chen XW, Gerlach B, Casasent D (2005) Pruning support vectors for imbalanced data classification. In Proceedings. 2005 IEEE international joint conference on neural networks, 2005 (IJCNN'05), vol 3. IEEE, pp 1883–1888

    Google Scholar 

  106. Kubat M, Matwin S (1997) Addressing the curse of imbalanced training sets: one-sided selection. In: Proceedings of the fourteenth international conference on machine learning, vol 97. Morgan Kaufmann, San Mateo, CA, pp 179–186

    Google Scholar 

  107. Chawla NV, Bowyer KW, Hall LO, Kegelmeyer WP (2011) SMOTE: synthetic minority over-sampling technique. arXiv preprint arXiv:1106.1813

    Google Scholar 

  108. Estabrooks A, Jo T, Japkowicz N (2004) A multiple resampling method for learning from imbalanced data sets. Comput Intell 20(1):18–36

    Article  Google Scholar 

  109. Schölkopf B, Platt JC, Shawe-Taylor J, Smola AJ, Williamson RC (2001) Estimating the support of a high-dimensional distribution. Neural Comput 13(7):1443–1471

    Article  Google Scholar 

  110. Raskutti B, Kowalczyk A (2004) Extreme re-balancing for SVMs: a case study. ACM SIGKDD Explor Newslett 6(1):60–69

    Article  Google Scholar 

  111. Manevitz LM, Yousef M (2002) One-class SVMs for document classification. J Mach Learn Res 2:139–154

    Google Scholar 

  112. Kira K, Rendell LA (1992) The feature selection problem: traditional methods and a new algorithm. In: Proceedings of the tenth national conference on artificial intelligence. AAAI Press, Menlo Park, CA, pp 129–134

    Google Scholar 

  113. Wolf JA, Moreau JF, Akilov O, Patton T, English JC, Ho J, Ferris LK (2013) Diagnostic inaccuracy of Smartphone applications for melanoma detection. JAMA Dermatol 149(4):422–426

    Article  Google Scholar 

  114. Chao JT, Loescher LJ, Soyer HP, Curiel-Lewandrowski C (2013) Barriers to mobile teledermoscopy in primary care. J Am Acad Dermatol 69(5):821–824

    Article  Google Scholar 

  115. Kroemer S, Frühauf J, Campbell TM, Massone C, Schwantzer G, Soyer HP, Hofmann‐Wellenhof R (2011) Mobile teledermatology for skin tumour screening: diagnostic accuracy of clinical and dermoscopic image tele-evaluation using cellular phones. Br J Dermatol 164(5):973–979

    Article  CAS  Google Scholar 

Download references

Acknowledgment

This research has been supported in part by NSF grant 521527 and NIH grant 5R21AR057921-02. This chapter was developed while GZ was a Visiting Professor at the Basque Center on Cognition, Brain, and Language, in Donostia-San Sebastián, Spain, and a Fellow of the Ikerbasque Foundation, Basque Country, Spain.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to George Zouridakis Ph.D. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer Science+Business Media New York

About this protocol

Cite this protocol

Zouridakis, G. et al. (2015). Melanoma and Other Skin Lesion Detection Using Smart Handheld Devices. In: Rasooly, A., Herold, K. (eds) Mobile Health Technologies. Methods in Molecular Biology, vol 1256. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-2172-0_30

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-2172-0_30

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-2171-3

  • Online ISBN: 978-1-4939-2172-0

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics