Skip to main content

Sperm Biology from Production to Ejaculation

  • Chapter
  • First Online:
Unexplained Infertility

Abstract

Spermatogenesis is a sequence of highly intricate stages by which an undifferentiated diploid spermatogonium matures into a specialized, genetically unique haploid spermatozoon. Within the Sertoli cells, both mitosis and meiosis are responsible for transforming the diploid spermatogonial cells into unique haploid spermatids. This process requires the assistance of hormones regulated via the hypothalamus–pituitary–gonadal axis—namely, gonadotropin-releasing hormone, luteinizing hormone (LH), and follicle-stimulating hormone (FSH). However, not all spermatogonia are destined to mature. In fact, most undergo apoptosis and are phagocytosed. Through spermiogenesis, spermatids elongate to form spermatozoa, which then leave the Sertoli cells and enter the epididymis for final maturation. Here, they acquire motility and acrosomal function, which are necessary for successful fertilization. This entire process from production to ejaculation of mature spermatozoa takes, on average, 64 days to complete. Essentially, spermatogenesis and spermiogenesis create fully functional spermatozoa that can travel efficiently through the female reproductive tract to the ovum and allows for the contribution of exclusive male genes to the offspring genome. This chapter serves as a comprehensive overview of sperm biology from production to ejaculation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Agger P. Scrotal and testicular temperature: its relation to sperm count before and after operation for varicocele. Fertil Steril. 1971;22(5):286–97.

    CAS  PubMed  Google Scholar 

  2. Candas V, Becmeur F, Bothorel B, Hoeft A. Qualitative assessment of thermal and evaporative adjustments of human scrotal skin in response to heat stress. Int J Androl. 1993;16(2):137–42.

    Article  CAS  PubMed  Google Scholar 

  3. Middendorff R, Muller D, Mewe M, Mukhopadhyay AK, Holstein AF, Davidoff MS. The tunica albuginea of the human testis is characterized by complex contraction and relaxation activities regulated by cyclic GMP. J Clin Endocrinol Metab. 2002;87(7):3486–99.

    Article  CAS  PubMed  Google Scholar 

  4. Roosen-Runge EC, Holstein AF. The human rete testis. Cell Tissue Res. 1978;189(3):409–33.

    Article  CAS  PubMed  Google Scholar 

  5. Holstein AF, Schafer E. A further type of transient cytoplasmic organelle in human spermatids. Cell Tissue Res. 1978;192(2):359–61.

    Article  CAS  PubMed  Google Scholar 

  6. Davidoff MS, Breucker H, Holstein AF, Seidl K. Cellular architecture of the lamina propria of human seminiferous tubules. Cell Tissue Res. 1990;262(2):253–61.

    Article  CAS  PubMed  Google Scholar 

  7. Holstein AF, Maekawa M, Nagano T, Davidoff MS. Myofibroblasts in the lamina propria of human semi-niferous tubules are dynamic structures of heterogeneous phenotype. Arch Histol Cytol. 1996;59(2):109–25.

    Article  CAS  PubMed  Google Scholar 

  8. Holstein AF, Schulze W, Davidoff M. Understanding spermatogenesis is a prerequisite for treatment. Reprod Biol Endocrinol. 2003;1:107.

    Article  PubMed Central  PubMed  Google Scholar 

  9. Wang H, Xiong W, Chen Y, Ma Q, Ma J, Ge Y, et al. Evaluation on the phagocytosis of apoptotic spermatogenic cells by Sertoli cells in vitro through detecting lipid droplet formation by Oil Red O staining. Reproduction. 2006;132(3):485–92.

    Article  CAS  PubMed  Google Scholar 

  10. Holstein AF. Spermatogenese beim Menschen: Grundlagenforschung und Klinik. Ann Anat. 1999;181:427–36.

    Article  CAS  PubMed  Google Scholar 

  11. Cheng CY, Mruk DD. A local autocrine axis in the testes that regulates spermatogenesis. Nat Rev Endocrinol. 2010;6(7):380–95.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  12. DeKretser DM, Kerr JB. The cytology of the testis. In: Knobill E, Neil JD, Editors. The physiology of reproduction. New York: Raven; 1994. p. 1177–290.

    Google Scholar 

  13. Sharpe RM. Regulation of spermatogenesis. In: Knobill E, Neil JD, Editors. The physiology of reproduction. New York: Raven; 1994. p. 1363–434.

    Google Scholar 

  14. Jegou B. The Sertoli cell. Baillieres Clin Endocrinol Metab. 1992;6(2):273–311.

    Article  CAS  PubMed  Google Scholar 

  15. Clermont Y. Kinetics of spermatogenesis in mammals: seminiferous epithelium cycle and spermatogonial renewal. Physiol Rev. 1972;52(1):198–236.

    CAS  PubMed  Google Scholar 

  16. Missell LM, Holochwost D, Boban D, Santi N, Shefi S, Hellerstein MK, Turek PJ. A stable isotop-mass spectrometric method for measuring human spermatogenesis kinetics in vivo. J Urol. 2006;175:242–6.

    Google Scholar 

  17. Culty M. Gonocytes, the forgotten cells of the germ cell lineage. Birth Defects Res C Embryo Today. 2009;87(1):1–26

    Article  CAS  PubMed  Google Scholar 

  18. Dym M, Fawcett DW. Further observations on the numbers of spermatogonia, spermatocytes, and spermatids connected by intercellular bridges in the mammalian testis. Biol Reprod. 1971;4(2):195–215.

    CAS  PubMed  Google Scholar 

  19. Holstein AF, Roosen-Runge EC, Schirren C. Illustrated pathology of human spermatogenesis. Berlin: Grosse; 1988.

    Google Scholar 

  20. Izaurralde E, Kas E, Laemmli UK. Highly preferential nucleation of histone H1 assembly on scaffold-associated regions. J Mol Biol. 1989;210(3):573–85.

    Article  CAS  PubMed  Google Scholar 

  21. Adachi Y, Kas E, Laemmli UK. Preferential, cooperative binding of DNA topoisomerase II to scaffold-associated regions. EMBO J. 1989;8(13):3997–4006.

    CAS  PubMed Central  PubMed  Google Scholar 

  22. Giroux CN. Meiosis: components and process in nuclear differentiation. Dev Genet. 1992;13(6):387–91.

    Article  CAS  PubMed  Google Scholar 

  23. Auger J, Schoevaert D, Negulesco I, Dadoune JP. The nuclear status of human sperm cells by TEM image cytometry: nuclear shape and chromatin texture in semen samples from fertile and infertile men. J Androl. 1993;14(6):456–63.

    CAS  PubMed  Google Scholar 

  24. Miller D, Brinkworth M, Iles D. Paternal DNA packaging in spermatozoa: more than the sum of its parts? DNA, histones, protamines and epigenetics. Reproduction. 2010;139(2):287–301.

    Article  CAS  PubMed  Google Scholar 

  25. Braun RE. Packaging paternal chromosomes with protamine. Nat Genet. 2001;28(1):10–2.

    CAS  PubMed  Google Scholar 

  26. Balhorn R. The protamine family of sperm nuclear proteins. Genome Biol. 2007;8(9):227.

    Article  PubMed Central  PubMed  Google Scholar 

  27. Bedford JM, Calvin H, Cooper GW. The maturation of spermatozoa in the human epididymis. J Reprod Fertil Suppl. 1973;18:199–213.

    CAS  PubMed  Google Scholar 

  28. Russell LD, Griswold MD. The Sertoli cells. Clearwater: Cache Press; 1993.

    Google Scholar 

  29. Breucker H, Schafer E, Holstein AF. Morphogenesis and fate of the residual body in human spermiogenesis. Cell Tissue Res. 1985;240(2):303–9.

    Article  CAS  PubMed  Google Scholar 

  30. Sharma R, Agarwal A. Spermatogenesis: An Overview. In: Zini A, Agarwal A, Editors. Sperm chromatin: biological and clinical applications in male. New York: Springer; 2011. p. 19–44.

    Chapter  Google Scholar 

  31. WHO. WHO laboratory manual for the examination of human semen and sperm-cervical mucus interaction. 5. ed. Cambridge: Cambridge University Press; 2010.

    Google Scholar 

  32. Katz DF, Overstreet JW, Samuels SJ, Niswander PW, Bloom TD, Lewis EL. Morphometric analysis of spermatozoa in the assessment of human male fertility. J Androl. 1986;7(4):203–10.

    CAS  PubMed  Google Scholar 

  33. WHO. WHO laboratory manual for the examination of human semen and sperm-cervical mucus interaction. 4. ed. Cambridge: Cambridge University Press; 1999.

    Google Scholar 

  34. Hafez ES. The human semen and fertility regulation in the male. International Conference in Andrology. J Reprod Med. 1976;16(2):91–6.

    CAS  PubMed  Google Scholar 

  35. Menkveld R, Stander FS, Kotze TJ, Kruger TF, van Zyl JA. The evaluation of morphological characteristics of human spermatozoa according to stricter criteria. Hum Reprod. 1990;5(5):586–92.

    CAS  PubMed  Google Scholar 

  36. Kruger TF, Menkveld R, Stander FS, Lombard CJ, Van der Merwe JP, van Zyl JA, et al. Sperm morphologic features as a prognostic factor in in vitro fertilization. Fertil Steril. 1986;46(6):1118–23.

    CAS  PubMed  Google Scholar 

  37. Langlais J, Roberts KD. A molecular membrane model of sperm capacitation and the acrosome reaction of mammalian spermatozoa. Gamete Res. 1985;12(2):183–224.

    Article  CAS  Google Scholar 

  38. Osheroff JE, Visconti PE, Valenzuela JP, Travis AJ, Alvarez J, Kopf GS. Regulation of human sperm capacitation by a cholesterol efflux-stimulated signal transduction pathway leading to protein kinase A-mediated up-regulation of protein tyrosine phosphorylation. Mol Hum Reprod. 1999;5(11):1017–26.

    Article  CAS  PubMed  Google Scholar 

  39. Song X, Li F, Cao G, Zhang J, Han Y. Distribution of alpha-D-mannose residues on zona pellucida and their role(s) in fertilization in pigs. Sci China C Life Sci. 2007;50(2):170–7.

    Article  CAS  PubMed  Google Scholar 

  40. Benoff S, Hurley I, Cooper GW, Mandel FS, Hershlag A, Scholl GM, et al. Fertilization potential in vitro is correlated with head-specific mannose-ligand receptor expression, acrosome status and membrane cholesterol content. Hum Reprod. 1993;8(12):2155–66.

    CAS  PubMed  Google Scholar 

  41. Heller CH, Clermont Y. Kinetics of the germinal epithelium in man. Recent Prog Horm Res. 1964;20:545–75.

    CAS  PubMed  Google Scholar 

  42. Schulze W, Rehder U. Organization and morphogenesis of the human seminiferous epithelium. Cell Tissue Res. 1984;237(3):395–407.

    Article  CAS  PubMed  Google Scholar 

  43. Filippini A, Riccioli A, Padula F, Lauretti P, D’Alessio A, De Cesaris P, et al. Control and impairment of immune privilege in the testis and in semen. Hum Reprod Update. 2001;7(5):444–9.

    Article  CAS  PubMed  Google Scholar 

  44. Mahi-Brown CA, Yule TD, Tung KS. Evidence for active immunological regulation in prevention of testicular autoimmune disease independent of the blood-testis barrier. Am J Reprod Immunol Microbiol. 1988;16(4):165–70.

    CAS  PubMed  Google Scholar 

  45. Sharpe RM. Environmental/lifestyle effects on spermatogenesis. Philos Trans R Soc Lond B Biol Sci. 2010;365(1546):1697–712.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  46. Magelssen H, Brydoy M, Fossa SD. The effects of cancer and cancer treatments on male reproductive function. Nat Clin Pract Urol. 2006;3(6):312–22.

    Article  CAS  PubMed  Google Scholar 

  47. Yeung BH, Wan HT, Law AY, Wong CK. Endocrine disrupting chemicals: multiple effects on testicular signaling and spermatogenesis. Spermatogenesis. 2011;1(3):231–9.

    Article  PubMed Central  PubMed  Google Scholar 

  48. Mathur PP, D’Cruz SC. The effect of environmental contaminants on testicular function. Asian J Androl. 2011;13(4):585–91.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  49. Esteves SC, Zini A, Aziz N, Alvarez JG, Sabanegh ES, Jr., Agarwal A. Critical appraisal of World Health Organization’s new reference values for human semen characteristics and effect on diagnosis and treatment of subfertile men. Urology. 2012;79(1):16–22.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anil K. Rengan BA .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Durairajanayagam, D., Rengan, A., Sharma, R., Agarwal, A. (2015). Sperm Biology from Production to Ejaculation. In: Schattman, G., Esteves, S., Agarwal, A. (eds) Unexplained Infertility. Springer, New York, NY. https://doi.org/10.1007/978-1-4939-2140-9_5

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-2140-9_5

  • Published:

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4939-2139-3

  • Online ISBN: 978-1-4939-2140-9

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics