Skip to main content

Introduction to Complex Fluids

  • Chapter
  • First Online:
Complex Fluids in Biological Systems

Abstract

In this chapter we introduce the fundamental concepts in Newtonian and complex fluid mechanics, beginning with the basic underlying assumptions in continuum mechanical modeling. The equations of mass and momentum conservation are derived, and the Cauchy stress tensor makes its first of many appearances. The Navier–Stokes equations are derived, along with their inertialess limit, the Stokes equations. Models used to describe complex fluid phenomena such as shear-dependent viscosity and viscoelasticity are then discussed, beginning with generalized Newtonian fluids. The Carreau–Yasuda and power-law fluid models receive special attention, and a mechanical instability is shown to exist for highly shear-thinning fluids. Differential constitutive models of viscoelastic flows are then described, beginning with the Maxwell fluid and Kelvin–Voigt solid models. After providing the foundations for objective (frame-invariant) derivatives, the linear models are extended to mathematically sound nonlinear models including the upper-convected Maxwell and Oldroyd-B models and others. A derivation of the upper-convected Maxwell model from the kinetic theory perspective is also provided. Finally, normal stress differences are discussed, and the reader is warned about common pitfalls in the mathematical modeling of complex fluids.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Note, however, that this coincidence is only partial: for example, equations for the normal components of the stress tensor do not reduce to the linear Maxwell equations in the same geometry.

References

  1. G.K. Batchelor, An Introduction to Fluid Dynamics (Cambridge University Press, Cambridge, 2000)

    Book  Google Scholar 

  2. L.D. Landau, E.M. Lifshitz, Fluid Mechanics (translated from Russian by J.B. Sykes and W.H. Reid), vol. 6 (Butterworth-Heinemann, Oxford, 1987)

    Google Scholar 

  3. L.G. Leal, Advanced Transport Phenomena: Fluid Mechanics and Convective Transport Processes, vol. 7 (Cambridge University Press, Cambridge, 2007)

    Book  Google Scholar 

  4. C. Pozrikidis, Introduction to Theoretical and Computational Fluid Dynamics (Oxford University Press, Oxford, 2011)

    MATH  Google Scholar 

  5. D.J. Acheson, Elementary Fluid Dynamics (Oxford University Press, Oxford, 1990)

    MATH  Google Scholar 

  6. S. Childress, An Introduction to Theoretical Fluid Mechanics (Courant Lecture Notes) (American Mathematical Society, Courant Institute of Mathematical Sciences at New York University, 2009)

    MATH  Google Scholar 

  7. C. Pozrikidis, Boundary Integral and Singularity Methods for Linearized Viscous Flow (Cambridge University Press, Cambridge, 1992)

    Book  MATH  Google Scholar 

  8. I.Z. Fisher, Statistical Theory of Liquids (University of Chicago Press, Chicago, 1961)

    Google Scholar 

  9. R.G. Larson, The Structure and Rheology of Complex Fluids (Oxford University Press, Oxford, 1999)

    Google Scholar 

  10. D.R. Foss, J.F. Brady, J. Rheol. 44, 629 (2000)

    Article  ADS  Google Scholar 

  11. M.E. Cates, S.M. Fielding, Adv. Phys. 55, 799 (2006)

    Article  ADS  Google Scholar 

  12. S. Lerouge, J.F. Berret, Adv. Polym. Sci. 230, 1 (2010)

    Article  Google Scholar 

  13. R.B. Bird, C.F. Curtiss, R.C. Armstrong, O. Hassager, Dynamics of polymeric liquids, vol. 1, Fluid Mechanics, 2nd edn. (Wiley, New York, 1987)

    Google Scholar 

  14. A. Lodge, Elastic Liquids: An Introductory Vector Treatment of Finite-Strain Polymer Rheology (Academic, New York, 1964)

    Google Scholar 

  15. L. Sedov, Introduction to the Mechanics of a Continuous Medium. ADIWES International Series in the Engineering Sciences (Addison-Wesley, Reading, 1965)

    Google Scholar 

  16. M. Chilcott, J. Rallison, J. Non-Newtonian Fluid Mech. 29, 381 (1988)

    Article  MATH  Google Scholar 

  17. A. Peterlin, J. Polym. Sci. Part B Polym. Phys. 4, 287 (1966)

    Article  Google Scholar 

  18. A.E. Likhtman, R.S. Graham, J. Non-Newtonian Fluid Mech. 114, 1 (2003)

    Article  MATH  Google Scholar 

  19. R.B. Bird, C.F. Curtiss, R.C. Armstrong, O. Hassager, Dynamics of polymeric liquids, vol. 2, Kinetic Theory, 2nd edn. (Wiley, New York, 1987)

    Google Scholar 

  20. M. Doi, S. Edwards, The Theory of Polymer Dynamics (Oxford University Press, Oxford, 1986)

    Google Scholar 

  21. R.G. Larson, Constitutive Equations for Polymer Melts and Solutions (Butterworths, Boston, 1988)

    Google Scholar 

  22. D.V. Boger, K. Walters, Rheological Phenomena in Focus (Elsevier, Amsterdam, 1993)

    MATH  Google Scholar 

  23. A. Celani, A. Puliafito, K. Turitsyn, Europhys. Lett. 70, 464 (2005)

    Article  ADS  Google Scholar 

  24. E. Sultan, J.W. van de Meent, E. Somfai, A.N. Morozov, W. van Saarloos, Europhys. Lett. 90, 99–121 (2010)

    Article  Google Scholar 

  25. A.J. Giacomin, J.M. Dealy, Techniques in Rheological Measurement (Springer, New York, 1993)

    Google Scholar 

  26. R.H. Ewoldt, A. Hosoi, G.H. McKinley, J. Rheol. 52, 1427 (2008)

    Article  ADS  Google Scholar 

  27. K. Hyun, M. Wilhelm, C.O. Klein, K.S. Cho, J.G. Nam, K.H. Ahn, S.J. Lee, R.H. Ewoldt, G.H. McKinley, Prog. Polym. Sci. 36, 1697 (2011)

    Article  Google Scholar 

  28. C.J. Petrie, J. Non-Newtonian Fluid Mech. 137, 15 (2006)

    Article  MATH  Google Scholar 

  29. M.A. Hulsen, J. Non-Newtonian Fluid Mech. 38, 93 (1990)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Saverio E. Spagnolie .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer Science+Business Media New York

About this chapter

Cite this chapter

Morozov, A., Spagnolie, S.E. (2015). Introduction to Complex Fluids. In: Spagnolie, S. (eds) Complex Fluids in Biological Systems. Biological and Medical Physics, Biomedical Engineering. Springer, New York, NY. https://doi.org/10.1007/978-1-4939-2065-5_1

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-2065-5_1

  • Published:

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4939-2064-8

  • Online ISBN: 978-1-4939-2065-5

  • eBook Packages: Physics and AstronomyPhysics and Astronomy (R0)

Publish with us

Policies and ethics