Skip to main content

Creating Site-Specific Isopeptide Linkages Between Proteins with the Traceless Staudinger Ligation

  • Protocol
  • First Online:
Book cover Peptide Libraries

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1248))

Abstract

Site-specific isopeptide linkages between the ε-amino group of a lysine residue in one protein and a carboxyl group in another are central to ubiquitin-mediated protein degradation and other cellular processes. These linkages are inaccessible with common recombinant DNA techniques. Here, we describe a method to link two proteins by an authentic isopeptide bond. The method unites three techniques at the forefront of molecular biology. An azidonorleucine residue is installed at a desired site in a substrate protein by nonnatural amino acid incorporation, and a phosphinothioester is installed at the C terminus of a pendant protein by expressed protein ligation. Then, the traceless Staudinger ligation is used to link the substrate and pendant proteins via an isopeptide bond. This method facilitates the study of otherwise intractable protein structure–function relationships.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Ciechanover A, Iwai K (2004) The ubiquitin system: from basic mechanisms to the patient bed. IUBMB Life 56:193–201

    Article  CAS  PubMed  Google Scholar 

  2. Li W, Ye Y (2008) Polyubiquitin chains: functions, structures, and mechanisms. Cell Mol Life Sci 65:2397–2406

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  3. Komander D (2009) The emerging complexity of protein ubiquitination. Biochem Soc Trans 37:937–953

    Article  CAS  PubMed  Google Scholar 

  4. Griffin M, Casadio R, Bergamini CM (2002) Transglutaminases: nature’s biological glues. Biochem J 368:377–396

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  5. Gentile V, Thomazy V, Piacentini M, Fesus L, Davies PJ (1992) Expression of tissue transglutaminase in Balb-C 3T3 fibroblasts: effects on cellular morphology and adhesion. J Cell Biol 119:463–474

    Article  CAS  PubMed  Google Scholar 

  6. Jones RA, Nicholas B, Mian S, Davies PJ, Griffin M (1997) Reduced expression of tissue transglutaminase in a human endothelial cell line leads to changes in cell spreading, cell adhesion and reduced polymerisation of fibronectin. J Cell Sci 110:2461–2472

    CAS  PubMed  Google Scholar 

  7. Greenberg CS, Birckbichler PJ, Rice RH (1991) Transglutaminases: multifunctional cross-linking enzymes that stabilize tissues. FASEB J 5:3071–3077

    CAS  PubMed  Google Scholar 

  8. Ariëns RAS, Lai T-S, Weisel JW, Greenberg CS, Grant PJ (2002) Role of factor XIII in fibrin clot formation and effects of genetic polymorphisms. Blood 100:743–754

    Article  PubMed  Google Scholar 

  9. El Oualid F, Merkx R, Ekkebus R, Hameed DS, Smit JJ, de Jong A, Hilkmann H, Sixma TK, Ovaa H (2010) Chemical synthesis of ubiquitin, ubiquitin-based probes, and diubiquitin. Angew Chem Int Ed 49:10149–10153

    Article  Google Scholar 

  10. Eger S, Scheffner M, Marx A, Rubini M (2010) Synthesis of defined ubiquitin dimers. J Am Chem Soc 132:16337–16339

    Article  CAS  PubMed  Google Scholar 

  11. Bavikar SN, Spasser L, Haj-Yahya M, Karthikeyan SV, Moyal T, Ajish Kumar KS, Brik A (2011) Chemical synthesis of ubiquitinated peptides with varying lengths and types of ubiquitin chains to explore the activity of deubiquitinases. Angew Chem Int Ed 50:758–763

    Google Scholar 

  12. Virdee S, Kapadnis PB, Elliott T, Lang K, Madrzak J, Nguyen DP, Riechmann L, Chin JW (2011) Traceless and site-specific ubiquitination of recombinant proteins. J Am Chem Soc 133:10708–10711

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  13. Castañeda C, Liu J, Chaturvedi A, Nowicka U, Cropp TA, Fushman D (2011) Nonenzymatic assembly of natural polyubiquitin chains of any linkage composition and isotopic labeling scheme. J Am Chem Soc 133:17855–17868

    Article  PubMed Central  PubMed  Google Scholar 

  14. Weikart ND, Sommer S, Mootz HD (2012) Click synthesis of ubiquitin dimer analogs to interrogate linkage-specific UBA domain binding. Chem Commun 48:296–298

    Article  CAS  Google Scholar 

  15. Valkevich EM, Guenette RG, Sanchez NA, Chen Y-c, Ge Y, Strieter ER (2012) Forging isopeptide bonds using thiol–ene chemistry: site-specific coupling of ubiquitin molecules for studying the activity of isopeptidases. J Am Chem Soc 134:6916–6919

    Article  CAS  PubMed  Google Scholar 

  16. Martin LJ, Raines RT (2010) Carpe diubiquitin. Angew Chem Int Ed 49:9042–9044

    Article  CAS  Google Scholar 

  17. Nilsson BL, Kiessling LL, Raines RT (2000) Staudinger ligation: a peptide from a thioester and azide. Org Lett 2:1939–1941

    Article  CAS  PubMed  Google Scholar 

  18. Saxon E, Armstrong JI, Bertozzi CR (2000) A “traceless” Staudinger ligation for the chemoselective synthesis of amide bonds. Org Lett 2:2141–2143

    Article  CAS  PubMed  Google Scholar 

  19. Pickart CM, Cohen RE (2004) Proteasomes and their kin: proteases in the machine age. Nat Rev Mol Cell Biol 5:177–187

    Article  CAS  PubMed  Google Scholar 

  20. Nilsson BL, Soellner MB, Raines RT (2005) Chemical synthesis of proteins. Annu Rev Biophys Biomol Struct 34:91–118

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  21. Tam A, Raines RT (2009) Protein engineering with the traceless Staudinger ligation. Methods Enzymol 462:25–44

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  22. Schilling CI, Jung N, Biskup M, Schepers U, Bräse S (2011) Bioconjugation via azide-Staudinger ligation: an overview. Angew Chem Int Ed 40:4840–4871

    CAS  Google Scholar 

  23. Soellner MB, Nilsson BL, Raines RT (2006) Reaction mechanism and kinetics of the traceless Staudinger ligation. J Am Chem Soc 128:8820–8828

    Article  CAS  PubMed  Google Scholar 

  24. Soellner MB, Nilsson BL, Raines RT (2002) Staudinger ligation of α-azido acids retains stereochemistry. J Org Chem 67:4993–4996

    Article  CAS  PubMed  Google Scholar 

  25. Nilsson BL, Hondal RJ, Soellner MB, Raines RT (2003) Protein assembly by orthogonal chemical ligation methods. J Am Chem Soc 125:5268–5269

    Article  CAS  PubMed  Google Scholar 

  26. Tam A, Soellner MB, Raines RT (2007) Water-soluble phosphinothiols for traceless Staudinger ligation and integration with expressed protein ligation. J Am Chem Soc 129:11421–11430

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  27. Tanrikulu IC, Schmitt E, Mechulam Y, Goddard WA, Tirrell DA (2009) Discovery of Escherichia coli methionyl-tRNA synthetase mutants for efficient labeling of proteins with azidonorleucine in vivo. Proc Natl Acad Sci U S A 106:15285–15290

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  28. Muir TW, Sondhi D, Cole PA (1998) Expressed protein ligation: a general method for protein engineering. Proc Natl Acad Sci U S A 95:6705–6710

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  29. Tam A, Raines RT (2009) Coulombic effects on the traceless Staudinger ligation in water. Bioorg Med Chem 17:1055–1063

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  30. Link AJ, Vink MKS, Tirrell DA (2004) Presentation and detection of azide functionality in bacterial cell surface proteins. J Am Chem Soc 126:10598–10602

    Article  CAS  PubMed  Google Scholar 

  31. McGrath NA, Raines RT (2011) Chemoselectivity in chemical biology: acyl transfer reactions with sulfur and selenium. Acc Chem Res 44:752–761

    Article  CAS  PubMed Central  PubMed  Google Scholar 

Download references

Acknowledgements

We are grateful to Drs. L. J. Martin and I. C. Tanrikulu for contributive discussions. This work was supported by Grant R01 GM044783 (NIH). K.A.A. was supported by the Molecular and Cellular Pharmacology Training Grant T32 GM008688 (NIH) and a predoctoral fellowship from the PhRMA Foundation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ronald T. Raines .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer Science+Business Media New York

About this protocol

Cite this protocol

Andersen, K.A., Raines, R.T. (2015). Creating Site-Specific Isopeptide Linkages Between Proteins with the Traceless Staudinger Ligation. In: Derda, R. (eds) Peptide Libraries. Methods in Molecular Biology, vol 1248. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-2020-4_4

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-2020-4_4

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-2019-8

  • Online ISBN: 978-1-4939-2020-4

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics