Skip to main content

Exploring Liver Mitochondrial Function by 13C-Stable Isotope Breath Tests: Implications in Clinical Biochemistry

  • Protocol
  • First Online:
Mitochondrial Regulation

Abstract

The liver plays a pivotal role in a myriad of metabolic processes, including detoxification, glycolipidic storage and export, and protein synthesis. Breath tests employing 13C as stable isotope have been introduced to explore such energy-dependent pathways involving mitochondrial function in the liver. Specific substrates are ketoisocaproic acid, methionine, and octanoic acid. In humans, the application of 13C-breath tests ranges from nonalcoholic and alcoholic liver diseases to liver cirrhosis, hepatocarcinoma, preoperative and postoperative assessment of liver function, and drug-induced liver damage. Studying liver mitochondrial function by 13C-breath tests represents a complementary tool to monitor complex metabolic processes in health and disease.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Lee WS, Sokol RJ (2007) Liver disease in mitochondrial disorders. Semin Liver Dis 27:259–273

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  2. Russmann S, Kullak-Ublick GA, Grattagliano I (2009) Current concepts of mechanisms in drug-induced hepatotoxicity. Curr Med Chem 16:3041–3053

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  3. Grattagliano I, Bonfrate L, Diogo CV et al (2009) Biochemical mechanisms in drug-induced liver injury: certainties and doubts. World J Gastroenterol 15:4865–4876

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  4. Grattagliano I, Portincasa P, D'Ambrosio G et al (2010) Avoiding drug interactions: here's help. J Fam Pract 59:322–329

    PubMed  Google Scholar 

  5. Sherlock S, Dooley J (2002) Diseases of the liver and biliary system. Blackwell Science, Oxford

    Google Scholar 

  6. Ziol M, Handra-Luca A, Kettaneh A et al (2005) Noninvasive assessment of liver fibrosis by measurement of stiffness in patients with chronic hepatitis C. Hepatology 41:48–54

    Article  PubMed  Google Scholar 

  7. Curry MP, Afdhal NH (2013) Tests used for the noninvasive assessment of hepatic fibrosis. UpToDate Version 20.0

    Google Scholar 

  8. Castera L, Vergniol J, Foucher J et al (2005) Prospective comparison of transient elastography, fibrotest, APRI, and liver biopsy for the assessment of fibrosis in chronic hepatitis C. Gastroenterology 128:343–350

    Article  PubMed  Google Scholar 

  9. Nadanaciva S, Will Y (2011) New insights in drug-induced mitochondrial toxicity. Curr Pharm Des 17:2100–2112

    Article  PubMed  CAS  Google Scholar 

  10. Pereira CV, Nadanaciva S, Oliveira PJ et al (2012) The contribution of oxidative stress to drug-induced organ toxicity and its detection in vitro and in vivo. Expert Opin Drug Metab Toxicol 8:219–237

    Article  PubMed  CAS  Google Scholar 

  11. Grattagliano I, de Bari O, Bernardo TC et al (2012) Role of mitochondria in nonalcoholic fatty liver disease-from origin to propagation. Clin Biochem 45:610–618

    Article  PubMed  CAS  Google Scholar 

  12. Grattagliano I, Lauterburg BH, Palasciano G et al (2010) (13)C-breath tests for clinical investigation of liver mitochondrial function. Eur J Clin Invest 40(9):843–850

    Article  PubMed  CAS  Google Scholar 

  13. Masuo Y, Imai T, Shibato J et al (2009) Omic analyses unravels global molecular changes in the brain and liver of a rat model for chronic Sake (Japanese alcoholic beverage) intake. Electrophoresis 30:1259–1275

    Article  PubMed  CAS  Google Scholar 

  14. Griffin JL, Nicholls AW (2006) Metabolomics as a functional genomic tool for understanding lipid dysfunction in diabetes, obesity and related disorders. Pharmacogenomics 7:1095–1107

    Article  PubMed  CAS  Google Scholar 

  15. Krahenbuhl L, Ledermann M, Lang C et al (2000) Relationship between hepatic mitochondrial functions in vivo and in vitro in rats with carbon tetrachloride-induced liver cirrhosis. J Hepatol 33:216–223

    Article  PubMed  CAS  Google Scholar 

  16. Michaletz PA, Cap L, Alpert E et al (1989) Assessment of mitochondrial function in vivo with a breath test utilizing alpha-ketoisocaproic acid. Hepatology 10:829–832

    Article  PubMed  CAS  Google Scholar 

  17. Grattagliano I, Vendemiale G, Lauterburg BH (1999) Reperfusion injury of the liver: role of mitochondria and protection by glutathione ester. J Surg Res 86:2–8

    Article  PubMed  CAS  Google Scholar 

  18. Berthold HK, Giesen TA, Gouni-Berthold I (2009) The stable isotope ketoisocaproic acid breath test as a measure of hepatic decarboxylation capacity: a quantitative analysis in normal subjects after oral and intravenous administration. Liver Int 29:1356–1364

    Article  PubMed  CAS  Google Scholar 

  19. Lauterburg BH, Liang D, Schwarzenbach FA et al (1993) Mitochondrial dysfunction in alcoholic patients as assessed by breath analysis. Hepatology 17:418–422

    Article  PubMed  CAS  Google Scholar 

  20. Witschi A, Mossi S, Meyer B et al (1994) Mitochondrial function reflected by the decarboxylation of [13C]ketoisocaproate is impaired in alcoholics. Alcohol Clin Exp Res 18:951–955

    Article  PubMed  CAS  Google Scholar 

  21. Bendtsen P, Hannestad U, Pahlsson P (1998) Evaluation of the carbon 13-labeled Ketoisocaproate breath test to assess mitochondrial dysfunction in patients with high alcohol consumption. Alcohol Clin Exp Res 22:1792–1795

    Article  PubMed  CAS  Google Scholar 

  22. Portincasa P, Grattagliano I, Lauterburg BH et al (2006) Liver breath tests non-invasively predict higher stages of non-alcoholic steatohepatitis. Clin Sci (Lond) 111:135–143

    Article  CAS  Google Scholar 

  23. Palmieri VO, Grattagliano I, Minerva F et al (2009) Liver function as assessed by breath tests in patients with hepatocellular carcinoma. J Surg Res 157:199–207

    Article  PubMed  Google Scholar 

  24. Bonfrate L, Giuliante F, Palasciano G et al (2013) Unexpected discovery of massive liver echinococcosis. A clinical, morphological, and functional diagnosis. Ann Hepatol 12:634–641

    PubMed  CAS  Google Scholar 

  25. Pessayre D, Mansouri A, Haouzi D et al (1999) Hepatotoxicity due to mitochondrial dysfunction. Cell Biol Toxicol 15:367–373

    Article  PubMed  CAS  Google Scholar 

  26. Lauterburg BH, Grattagliano I, Gmur R et al (1995) Noninvasive assessment of the effect of xenobiotics on mitochondrial function in human beings: studies with acetylsalicylic acid and ethanol with the use of the carbon 13-labeled ketoisocaproate breath test. J Lab Clin Med 125:378–383

    PubMed  CAS  Google Scholar 

  27. Danicke S, Diers S (2013) Effects of ergot alkaloids on liver function of piglets as evaluated by the (13)C-methacetin and (13)C-alpha-ketoisocaproic acid breath test. Toxins (Basel) 5:139–161

    Article  PubMed  PubMed Central  Google Scholar 

  28. Storch KJ, Wagner DA, Burke JF et al (1988) Quantitative study in vivo of methionine cycle in humans using [methyl-2H3]- and [1-13C]methionine. Am J Physiol 255:E322–E331

    PubMed  CAS  Google Scholar 

  29. Russmann S, Junker E, Lauterburg BH (2002) Remethylation and transsulfuration of methionine in cirrhosis: studies with L-[H3-methyl-1-C]methionine. Hepatology 36:1190–1196

    Article  PubMed  CAS  Google Scholar 

  30. Armuzzi A, Marcoccia S, Zocco MA et al (2000) Non-Invasive assessment of human hepatic mitochondrial function through the 13C-methionine breath test. Scand J Gastroenterol 35:650–653

    Article  PubMed  CAS  Google Scholar 

  31. Spahr L, Negro F, Leandro G et al (2003) Impaired hepatic mitochondrial oxidation using the 13C-methionine breath test in patients with macrovesicular steatosis and patients with cirrhosis. Med Sci Monit 9:CR6–CR11

    PubMed  CAS  Google Scholar 

  32. Milazzo L, Piazza M, Sangaletti O et al (2005) [13C]Methionine breath test: a novel method to detect antiretroviral drug-related mitochondrial toxicity. J Antimicrob Chemother 55:84–89

    Article  PubMed  CAS  Google Scholar 

  33. Li Y, Boehning DF, Qian T et al (2007) Hepatitis C virus core protein increases mitochondrial ROS production by stimulation of Ca2+ uniporter activity. FASEB J 21:2474–2485

    Article  PubMed  CAS  Google Scholar 

  34. Stuwe SH, Goetze O, Arning L et al (2011) Hepatic mitochondrial dysfunction in Friedreich ataxia. BMC Neurol 11:145

    Article  PubMed  PubMed Central  Google Scholar 

  35. Durr A, Cossee M, Agid Y et al (1996) Clinical and genetic abnormalities in patients with Friedreich's ataxia. N Engl J Med 335:1169–1175

    Article  PubMed  CAS  Google Scholar 

  36. Ghoos YF, Maes BD, Geypens BJ et al (1993) Measurement of gastric emptying rate of solids by means of a carbon-labeled octanoic acid breath test. Gastroenterology 104:1640–1647

    PubMed  CAS  Google Scholar 

  37. Perri F, Bellini M, Portincasa P et al (2010) (13)C-octanoic acid breath test (OBT) with a new test meal (EXPIROGer): toward standardization for testing gastric emptying of solids. Dig Liver Dis 42:549–553

    Article  PubMed  Google Scholar 

  38. Shalev T, Aeed H, Sorin V et al (2010) Evaluation of the 13C-octanoate breath test as a surrogate marker of liver damage in animal models. Dig Dis Sci 55:1589–1598

    Article  PubMed  Google Scholar 

  39. Schneider AR, Kraut C, Lindenthal B et al (2005) Total body metabolism of 13C-octanoic acid is preserved in patients with non-alcoholic steatohepatitis, but differs between women and men. Eur J Gastroenterol Hepatol 17:1181–1184

    Article  PubMed  CAS  Google Scholar 

  40. Miele L, Grieco A, Armuzzi A et al (2003) Hepatic mitochondrial beta-oxidation in patients with nonalcoholic steatohepatitis assessed by 13C-octanoate breath test. Am J Gastroenterol 98:2335–2336

    Article  PubMed  Google Scholar 

  41. van de Casteele M, Luypaerts A, Geypens B et al (2003) Oxidative breakdown of octanoic acid is maintained in patients with cirrhosis despite advanced disease. Neurogastroenterol Motil 15:113–120

    Article  PubMed  Google Scholar 

  42. Banasch M, Emminghaus R, Ellrichmann M et al (2008) Longitudinal effects of hepatitis C virus treatment on hepatic mitochondrial dysfunction assessed by C-methionine breath test. Aliment Pharmacol Ther 28:443–449

    Article  PubMed  CAS  Google Scholar 

  43. Jaeschke H, McGill MR, Ramachandran A (2012) Oxidant stress, mitochondria, and cell death mechanisms in drug-induced liver injury: lessons learned from acetaminophen hepatotoxicity. Drug Metab Rev 44:88–106

    Article  PubMed  CAS  Google Scholar 

  44. Nakagawa Y, Suzuki T, Kamimura H et al (2006) Role of mitochondrial membrane permeability transition in N-nitrosofenfluramine-induced cell injury in rat hepatocytes. Eur J Pharmacol 529:33–39

    Article  PubMed  CAS  Google Scholar 

  45. Trost LC, Lemasters JJ (1997) Role of the mitochondrial permeability transition in salicylate toxicity to cultured rat hepatocytes: implications for the pathogenesis of Reye's syndrome. Toxicol Appl Pharmacol 147:431–441

    Article  PubMed  CAS  Google Scholar 

  46. Mingatto FE, dos Santos AC, Rodrigues T et al (2000) Effects of nimesulide and its reduced metabolite on mitochondria. Br J Pharmacol 131:1154–1160

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  47. Kass GE, Price SC (2008) Role of mitochondria in drug-induced cholestatic injury. Clin Liver Dis 12:27–51, vii

    Article  PubMed  Google Scholar 

  48. Candelli M, Miele L, Armuzzi A et al (2008) 13C-methionine breath tests for mitochondrial liver function assessment. Eur Rev Med Pharmacol Sci 12:245–249

    PubMed  CAS  Google Scholar 

  49. Duro D, Duggan C, Valim C et al (2009) Novel intravenous (13)C-methionine breath test as a measure of liver function in children with short bowel syndrome. J Pediatr Surg 44:236–240, discussion 240

    Article  PubMed  PubMed Central  Google Scholar 

  50. Bromer MQ, Kantor SB, Wagner DA et al (2002) Simultaneous measurement of gastric emptying with a simple muffin meal using [13C]octanoate breath test and scintigraphy in normal subjects and patients with dyspeptic symptoms. Dig Dis Sci 47:1657–1663

    Article  PubMed  Google Scholar 

  51. Dawson B, Trapp RG (2001) Basic & clinical biostatistics, vol 3. McGraw-Hill, New York

    Google Scholar 

  52. Hintze J (2013) NCSS 9. NCSS, LLC, Kaysville, UT www.ncss.com. Number Cruncher Statistical System (NCSS), Kaysville, UT

  53. Winchell HS, Wiley K (1970) Considerations in analysis of breath 14CO2 data. J Nucl Med 11:708–710

    PubMed  CAS  Google Scholar 

  54. Banasch M, Ellrichmann M, Tannapfel A et al (2011) The non-invasive (13)C-methionine breath test detects hepatic mitochondrial dysfunction as a marker of disease activity in non-alcoholic steatohepatitis. Eur J Med Res 16:258–264

    Article  PubMed  CAS  PubMed Central  Google Scholar 

Download references

Acknowledgements

This work is partly supported by grants from the University of Bari (ORBA09XZZT, ORBA08YHKX). We are indebted to Carlos Palmeira, Paulo Oliveira and Catia Diogo (Coimbra University, Portugal) for longstanding scientific discussions and for sharing collaboration. We thank Rosa De Venuto, Paola De Benedictis, and Michele Persichella for skillful technical support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Piero Portincasa M.D., Ph.D. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer Science+Business Media, New York

About this protocol

Cite this protocol

Grattagliano, I., Bonfrate, L., Lorusso, M., Castorani, L., de Bari, O., Portincasa, P. (2015). Exploring Liver Mitochondrial Function by 13C-Stable Isotope Breath Tests: Implications in Clinical Biochemistry. In: Palmeira, C., Rolo, A. (eds) Mitochondrial Regulation. Methods in Molecular Biology, vol 1241. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-1875-1_12

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-1875-1_12

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-1874-4

  • Online ISBN: 978-1-4939-1875-1

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics