Skip to main content

Strategies to Increase Genome Editing Frequencies and to Facilitate the Identification of Edited Cells

  • Protocol
  • First Online:

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1239))

Abstract

The power of genome editing is increasingly recognized as it has become more accessible to a wide range of scientists and a wider range of uses has been reported. Nonetheless, an important practical aspect of the strategy is develop methods to increase the frequency of genome editing or methods that enrich for genome-edited cells such that they can be more easily identified. This chapter discusses several different approaches including the use of cold-shock, exonucleases, surrogate markers, specialized donor vectors, and oligonucleotides to enhance the frequency of genome editing or to facilitate the identification of genome-edited cells.

This is a preview of subscription content, log in via an institution.

Buying options

Protocol
USD   49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   139.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Springer Nature is developing a new tool to find and evaluate Protocols. Learn more

References

  1. Paques F, Duchateau P (2007) Meganucleases and DNA double-strand break-induced recombination: perspectives for gene therapy. Curr Gene Ther 7(1):49–66

    Article  CAS  PubMed  Google Scholar 

  2. Chan SH, Stoddard BL, Xu SY (2011) Natural and engineered nicking endonucleases–from cleavage mechanism to engineering of strand-specificity. Nucleic Acids Res 39(1):1–18. doi:10.1093/nar/gkq742

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  3. Porteus MH, Carroll D (2005) Gene targeting using zinc finger nucleases. Nat Biotechnol 23(8):967–973. doi:10.1038/nbt1125

    Article  CAS  PubMed  Google Scholar 

  4. Urnov FD, Rebar EJ, Holmes MC, Zhang HS, Gregory PD (2010) Genome editing with engineered zinc finger nucleases. Nat Rev Genet 11(9):636–646. doi:10.1038/nrg2842

    Article  CAS  PubMed  Google Scholar 

  5. Christian M, Cermak T, Doyle EL, Schmidt C, Zhang F, Hummel A, Bogdanove AJ, Voytas DF (2010) Targeting DNA double-strand breaks with TAL effector nucleases. Genetics 186(2):757–761. doi:10.1534/genetics.110.120717

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  6. Doyle EL, Stoddard BL, Voytas DF, Bogdanove AJ (2013) TAL effectors: highly adaptable phytobacterial virulence factors and readily engineered DNA-targeting proteins. Trends Cell Biol 23(8):390–398. doi:10.1016/j.tcb.2013.04.003

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  7. Damian M, Porteus MH (2013) A crisper look at genome editing: RNA-guided genome modification. Mol Ther 21(4):720–722. doi:10.1038/mt.2013.46

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  8. Cong L, Ran FA, Cox D, Lin S, Barretto R, Habib N, Hsu PD, Wu X, Jiang W, Marraffini LA, Zhang F (2013) Multiplex genome engineering using CRISPR/Cas systems. Science 339(6121):819–823. doi:10.1126/science.1231143

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  9. Mali P, Esvelt KM, Church GM (2013) Cas9 as a versatile tool for engineering biology. Nat Methods 10(10):957–963. doi:10.1038/nmeth.2649

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  10. Boissel S, Jarjour J, Astrakhan A, Adey A, Gouble A, Duchateau P, Shendure J, Stoddard BL, Certo MT, Baker D, Scharenberg AM (2013) megaTALs: a rare-cleaving nuclease architecture for therapeutic genome engineering. Nucleic Acids Res. doi:10.1093/nar/gkt1224

    Google Scholar 

  11. Cermak T, Doyle EL, Christian M, Wang L, Zhang Y, Schmidt C, Baller JA, Somia NV, Bogdanove AJ, Voytas DF (2011) Efficient design and assembly of custom TALEN and other TAL effector-based constructs for DNA targeting. Nucleic Acids Res 39(12):e82. doi:10.1093/nar/gkr218

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  12. Wang H, Yang H, Shivalila CS, Dawlaty MM, Cheng AW, Zhang F, Jaenisch R (2013) One-step generation of mice carrying mutations in multiple genes by CRISPR/Cas-mediated genome engineering. Cell 153(4):910–918. doi:10.1016/j.cell.2013.04.025

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  13. Ding Q, Regan SN, Xia Y, Oostrom LA, Cowan CA, Musunuru K (2013) Enhanced efficiency of human pluripotent stem cell genome editing through replacing TALENs with CRISPRs. Cell Stem Cell 12(4):393–394. doi:10.1016/j.stem.2013.03.006

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  14. Pruett-Miller SM, Connelly JP, Maeder ML, Joung JK, Porteus MH (2008) Comparison of zinc finger nucleases for use in gene targeting in mammalian cells. Mol Ther 16(4):707–717. doi:10.1038/mt.2008.20

    Article  CAS  PubMed  Google Scholar 

  15. Doyon Y, Choi VM, Xia DF, Vo TD, Gregory PD, Holmes MC (2010) Transient cold shock enhances zinc-finger nuclease-mediated gene disruption. Nat Methods 7(6):459–460. doi:10.1038/nmeth.1456

    Article  CAS  PubMed  Google Scholar 

  16. Carlson DF, Fahrenkrug SC, Hackett PB (2012) Targeting DNA with fingers and TALENs. Mol Therapy Nucleic Acids 1:e3. doi:10.1038/mtna.2011.5

    Article  Google Scholar 

  17. Certo MT, Gwiazda KS, Kuhar R, Sather B, Curinga G, Mandt T, Brault M, Lambert AR, Baxter SK, Jacoby K, Ryu BY, Kiem HP, Gouble A, Paques F, Rawlings DJ, Scharenberg AM (2012) Coupling endonucleases with DNA end-processing enzymes to drive gene disruption. Nat Methods 9(10):973–975. doi:10.1038/nmeth.2177

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  18. Certo MT, Ryu BY, Annis JE, Garibov M, Jarjour J, Rawlings DJ, Scharenberg AM (2011) Tracking genome engineering outcome at individual DNA breakpoints. Nat Methods 8(8):671–676. doi:10.1038/nmeth.1648

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  19. Kim H, Kim MS, Wee G, Lee CI, Kim H, Kim JS (2013) Magnetic separation and antibiotics selection enable enrichment of cells with ZFN/TALEN-induced mutations. PLoS One 8(2):e56476. doi:10.1371/journal.pone.0056476

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  20. Kim H, Um E, Cho SR, Jung C, Kim H, Kim JS (2011) Surrogate reporters for enrichment of cells with nuclease-induced mutations. Nat Methods 8(11):941–943. doi:10.1038/nmeth.1733

    Article  CAS  PubMed  Google Scholar 

  21. Yusa K (2013) Seamless genome editing in human pluripotent stem cells using custom endonuclease-based gene targeting and the piggyBac transposon. Nat Protoc 8(10):2061–2078. doi:10.1038/nprot.2013.126

    Article  CAS  PubMed  Google Scholar 

  22. Zou J, Maeder ML, Mali P, Pruett-Miller SM, Thibodeau-Beganny S, Chou BK, Chen G, Ye Z, Park IH, Daley GQ, Porteus MH, Joung JK, Cheng L (2009) Gene targeting of a disease-related gene in human induced pluripotent stem and embryonic stem cells. Cell Stem Cell 5(1):97–110. doi:10.1016/j.stem.2009.05.023

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  23. Russell DW, Hirata RK (1998) Human gene targeting by viral vectors. Nat Genet 18(4):325–330. doi:10.1038/ng0498-325

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  24. Chen F, Pruett-Miller SM, Huang Y, Gjoka M, Duda K, Taunton J, Collingwood TN, Frodin M, Davis GD (2011) High-frequency genome editing using ssDNA oligonucleotides with zinc-finger nucleases. Nat Methods 8(9):753–755. doi:10.1038/nmeth.1653

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  25. Yang L, Guell M, Byrne S, Yang JL, De Los AA, Mali P, Aach J, Kim-Kiselak C, Briggs AW, Rios X, Huang PY, Daley G, Church G (2013) Optimization of scarless human stem cell genome editing. Nucleic Acids Res 41(19):9049–9061. doi:10.1093/nar/gkt555

    Article  CAS  PubMed Central  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Matthew Porteus M.D., Ph.D. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer Science+Business Media New York

About this protocol

Cite this protocol

Porteus, M. (2015). Strategies to Increase Genome Editing Frequencies and to Facilitate the Identification of Edited Cells. In: Pruett-Miller, S. (eds) Chromosomal Mutagenesis. Methods in Molecular Biology, vol 1239. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-1862-1_16

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-1862-1_16

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-1861-4

  • Online ISBN: 978-1-4939-1862-1

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics