Skip to main content

Community Resources and Technologies Developed Through the NIH Roadmap Epigenomics Program

  • Protocol
  • First Online:
Cancer Epigenetics

Abstract

This chapter describes resources and technologies generated by the NIH Roadmap Epigenomics Program that may be useful to epigenomics researchers investigating a variety of diseases including cancer. Highlights include reference epigenome maps for a wide variety of human cells and tissues, the development of new technologies for epigenetic assays and imaging, the identification of novel epigenetic modifications, and an improved understanding of the role of epigenetic processes in a diversity of human diseases. We also discuss future needs in this area including exploration of epigenomic variation between individuals, single-cell epigenomics, environmental epigenomics, exploration of the use of surrogate tissues, and improved technologies for epigenome manipulation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Jaenisch R, Bird A (2003) Epigenetic regulation of gene expression: how the genome integrates intrinsic and environmental signals. Nat Genet 33(Suppl):245–254

    Article  CAS  PubMed  Google Scholar 

  2. Margueron R, Reinberg D (2010) Chromatin structure and the inheritance of epigenetic information. Nat Rev Genet 11:285–296

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  3. Bernstein BE, Meissner A, Lander ES (2007) The mammalian epigenome. Cell 128:669–681

    Article  CAS  PubMed  Google Scholar 

  4. McConnell MJ, Lindberg MR, Brennand KJ, Piper JC, Voet T, Cowing-Zitron C, Shumilina S, Lasken RS, Vermeesch JR, Hall IM, Gage FH (2013) Mosaic copy number variation in human neurons. Science 342:632–637

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  5. Jung D, Giallourakis C, Mostoslavsky R, Alt FW (2006) Mechanism and control of V(D)J recombination at the immunoglobulin heavy chain locus. Annu Rev Immunol 24:541–570

    Article  CAS  PubMed  Google Scholar 

  6. Feinberg AP (2010) Epigenomics reveals a functional genome anatomy and a new approach to common disease. Nat Biotechnol 28:1049–1052

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  7. Bell CG, Beck S (2010) The epigenomic interface between genome and environment in common complex diseases. Brief Funct Genomics 9:477–485

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  8. Rivera CM, Ren B (2013) Mapping human epigenomes. Cell 155:39–55

    Article  CAS  PubMed  Google Scholar 

  9. Meissner A (2010) Epigenetic modifications in pluripotent and differentiated cells. Nat Biotechnol 28:1079–1088

    Article  CAS  PubMed  Google Scholar 

  10. Beck S, Olek A, Walter J (1999) From genomics to epigenomics: a loftier view of life. Nat Biotechnol 17:1144

    Article  CAS  PubMed  Google Scholar 

  11. The American Association for Cancer Research Human Epigenome Task Force and the European Union, Network of Excellence, Scientific Advisory Board (2008) Moving AHEAD with an international human epigenome project. Nature 454:711–715

    Article  Google Scholar 

  12. Jones PA, Martienssen R (2005) A blueprint for a Human Epigenome Project: the AACR Human Epigenome Workshop. Cancer Res 65:11241–11246

    Article  CAS  PubMed  Google Scholar 

  13. Bernstein BE, Stamatoyannopoulos JA, Costello JF, Ren B, Milosavljevic A, Meissner A, Kellis M, Marra MA, Beaudet al, Ecker JR, Farnham PJ, Hirst M, Lander ES, Mikkelsen TS, Thomson JA (2010) The NIH Roadmap Epigenomics Mapping Consortium. Nat Biotechnol 28:1045–1048

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  14. Lister R, Pelizzola M, Dowen RH, Hawkins RD, Hon G, Tonti-Filippini J, Nery JR, Lee L, Ye Z, Ngo QM, Edsall L, Antosiewicz-Bourget J, Stewart R, Ruotti V, Millar AH, Thomson JA, Ren B, Ecker JR (2009) Human DNA methylomes at base resolution show widespread epigenomic differences. Nature 462:315–322

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  15. Xie W, Schultz MD, Lister R, Hou Z, Rajagopal N, Ray P, Whitaker JW, Tian S, Hawkins RD, Leung D, Yang H, Wang T, Lee AY, Swanson SA, Zhang J, Zhu Y, Kim A, Nery JR, Urich MA, Kuan S, Yen CA, Klugman S, Yu P, Suknuntha K, Propson NE, Chen H, Edsall LE, Wagner U, Li Y, Ye Z, Kulkarni A, Xuan Z, Chung WY, Chi NC, Antosiewicz-Bourget JE, Slukvin I, Stewart R, Zhang MQ, Wang W, Thomson JA, Ecker JR, Ren B (2013) Epigenomic analysis of multilineage differentiation of human embryonic stem cells. Cell 153:1134–1148

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  16. Gifford CA, Ziller MJ, Gu H, Trapnell C, Donaghey J, Tsankov A, Shalek AK, Kelley DR, Shishkin AA, Issner R, Zhang X, Coyne M, Fostel JL, Holmes L, Meldrim J, Guttman M, Epstein C, Park H, Kohlbacher O, Rinn J, Gnirke A, Lander ES, Bernstein BE, Meissner A (2013) Transcriptional and epigenetic dynamics during specification of human embryonic stem cells. Cell 153:1149–1163

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  17. Zhu J, Adli M, Zou JY, Verstappen G, Coyne M, Zhang X, Durham T, Miri M, Deshpande V, De Jager PL, Bennett DA, Houmard JA, Muoio DM, Onder TT, Camahort R, Cowan CA, Meissner A, Epstein CB, Shoresh N, Bernstein BE (2013) Genome-wide chromatin state transitions associated with developmental and environmental cues. Cell 152:642–654

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  18. Stergachis AB, Haugen E, Shafer A, Fu W, Vernot B, Reynolds A, Raubitschek A, Ziegler S, LeProust EM, Akey JM, Stamatoyannopoulos JA (2013) Exonic transcription factor binding directs codon choice and affects protein evolution. Science 342:1367–1372

    Article  CAS  PubMed  Google Scholar 

  19. Maurano MT, Humbert R, Rynes E, Thurman RE, Haugen E, Wang H, Reynolds AP, Sandstrom R, Qu H, Brody J, Shafer A, Neri F, Lee K, Kutyavin T, Stehling-Sun S, Johnson AK, Canfield TK, Giste E, Diegel M, Bates D, Hansen RS, Neph S, Sabo PJ, Heimfeld S, Raubitschek A, Ziegler S, Cotsapas C, Sotoodehnia N, Glass I, Sunyaev SR, Kaul R, Stamatoyannopoulos JA (2012) Systematic localization of common disease-associated variation in regulatory DNA. Science 337:1190–1195

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  20. Chadwick LH (2012) The NIH Roadmap Epigenomics Program data resource. Epigenomics 4:317–324

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  21. Karnik R, Meissner A (2013) Browsing (Epi)genomes: a guide to data resources and epigenome browsers for stem cell researchers. Cell Stem Cell 13:14–21

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  22. Aguilar-Valles A, Vaissiere T, Griggs EM, Mikaelsson MA, Takacs IF, Young EJ, Rumbaugh G, Miller CA (2013) Methamphetamine-associated memory is regulated by a writer and an eraser of permissive histone methylation. Biol Psychiatry 1:1–18, http://dx.doi.org/10.1016/j.biopsych.2013.09.014

    Google Scholar 

  23. Jirtle RL, Skinner MK (2007) Environmental epigenomics and disease susceptibility. Nat Rev Genet 8:253–262

    Article  CAS  PubMed  Google Scholar 

  24. Ganu RS, Harris RA, Collins K, Aagaard KM (2012) Early origins of adult disease: approaches for investigating the programmable epigenome in humans, nonhuman primates, and rodents. ILAR J 53:306–321

    Article  PubMed Central  PubMed  Google Scholar 

  25. Zhang Z, Tan M, Xie Z, Dai L, Chen Y, Zhao Y (2011) Identification of lysine succinylation as a new post-translational modification. Nat Chem Biol 7:58–63

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  26. Tan M, Luo H, Lee S, Jin F, Yang JS, Montellier E, Buchou T, Cheng Z, Rousseaux S, Rajagopal N, Lu Z, Ye Z, Zhu Q, Wysocka J, Ye Y, Khochbin S, Ren B, Zhao Y (2011) Identification of 67 histone marks and histone lysine crotonylation as a new type of histone modification. Cell 146:1016–1028

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  27. Yuan CC, Matthews AG, Jin Y, Chen CF, Chapman BA, Ohsumi TK, Glass KC, Kutateladze TG, Borowsky ML, Struhl K, Oettinger MA (2012) Histone H3R2 symmetric dimethylation and histone H3K4 trimethylation are tightly correlated in eukaryotic genomes. Cell Rep 1:83–90

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  28. Dhayalan A, Tamas R, Bock I, Tattermusch A, Dimitrova E, Kudithipudi S, Ragozin S, Jeltsch A (2011) The ATRX-ADD domain binds to H3 tail peptides and reads the combined methylation state of K4 and K9. Hum Mol Genet 20:2195–2203

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  29. Lodhi N, Tulin AV (2011) PARP1 genomics: chromatin immunoprecipitation approach using anti-PARP1 antibody (ChIP and ChIP-seq). Methods Mol Biol 780:191–208

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  30. Peng JC, Valouev A, Swigut T, Zhang J, Zhao Y, Sidow A, Wysocka J (2009) Jarid2/Jumonji coordinates control of PRC2 enzymatic activity and target gene occupancy in pluripotent cells. Cell 139:1290–1302

    Article  PubMed Central  PubMed  Google Scholar 

  31. Baker SP, Phillips J, Anderson S, Qiu Q, Shabanowitz J, Smith MM, Yates JR III, Hunt DF, Grant PA (2010) Histone H3 Thr 45 phosphorylation is a replication-associated post-translational modification in S. cerevisiae. Nat Cell Biol 12:294–298

    CAS  PubMed Central  PubMed  Google Scholar 

  32. Adli M, Bernstein BE (2011) Whole-genome chromatin profiling from limited numbers of cells using nano-ChIP-seq. Nat Protoc 6:1656–1668

    Article  CAS  PubMed  Google Scholar 

  33. Harris RA, Wang T, Coarfa C, Nagarajan RP, Hong C, Downey SL, Johnson BE, Fouse SD, Delaney A, Zhao Y, Olshen A, Ballinger T, Zhou X, Forsberg KJ, Gu J, Echipare L, O’Geen H, Lister R, Pelizzola M, Xi Y, Epstein CB, Bernstein BE, Hawkins RD, Ren B, Chung WY, Gu H, Bock C, Gnirke A, Zhang MQ, Haussler D, Ecker JR, Li W, Farnham PJ, Waterland RA, Meissner A, Marra MA, Hirst M, Milosavljevic A, Costello JF (2010) Comparison of sequencing-based methods to profile DNA methylation and identification of monoallelic epigenetic modifications. Nat Biotechnol 28:1097–1105

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  34. Gu H, Bock C, Mikkelsen TS, Jager N, Smith ZD, Tomazou E, Gnirke A, Lander ES, Meissner A (2010) Genome-scale DNA methylation mapping of clinical samples at single-nucleotide resolution. Nat Methods 7:133–136

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  35. Lister R, O’Malley RC, Tonti-Filippini J, Gregory BD, Berry CC, Millar AH, Ecker JR (2008) Highly integrated single-base resolution maps of the epigenome in Arabidopsis. Cell 133:523–536

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  36. Cipriany BR, Murphy PJ, Hagarman JA, Cerf A, Latulippe D, Levy SL, Benitez JJ, Tan CP, Topolancik J, Soloway PD, Craighead HG (2012) Real-time analysis and selection of methylated DNA by fluorescence-activated single molecule sorting in a nanofluidic channel. Proc Natl Acad Sci U S A 109:8477–8482

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  37. Byrum SD, Raman A, Taverna SD, Tackett AJ (2012) ChAP-MS: a method for identification of proteins and histone posttranslational modifications at a single genomic locus. Cell Rep 2:198–205

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  38. Deal RB, Henikoff JG, Henikoff S (2010) Genome-wide kinetics of nucleosome turnover determined by metabolic labeling of histones. Science 328:1161–1164

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  39. Clowney EJ, LeGros MA, Mosley CP, Clowney FG, Markenskoff-Papadimitriou EC, Myllys M, Barnea G, Larabell CA, Lomvardas S (2012) Nuclear aggregation of olfactory receptor genes governs their monogenic expression. Cell 151:724–737

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  40. Wang Y, Zhang YL, Hennig K, Gale JP, Hong Y, Cha A, Riley M, Wagner F, Haggarty SJ, Holson E, Hooker J (2013) Class I HDAC imaging using [(3)H]CI-994 autoradiography. Epigenetics 8:756–764

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  41. Schroeder FA, Chonde DB, Riley MM, Moseley CK, Granda ML, Wilson CM, Wagner FF, Zhang YL, Gale J, Holson EB, Haggarty SJ, Hooker JM (2013) FDG-PET imaging reveals local brain glucose utilization is altered by class I histone deacetylase inhibitors. Neurosci Lett 550:119–124

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  42. Yeh HH, Tian M, Hinz R, Young D, Shavrin A, Mukhapadhyay U, Flores LG, Balatoni J, Soghomonyan S, Jeong HJ, Pal A, Uthamanthil R, Jackson JN, Nishii R, Mizuma H, Onoe H, Kagawa S, Higashi T, Fukumitsu N, Alauddin M, Tong W, Herholz K, Gelovani JG (2013) Imaging epigenetic regulation by histone deacetylases in the brain using PET/MRI with 18F-FAHA. Neuroimage 64:630–639

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  43. Feinberg AP, Vogelstein B (1983) Hypomethylation distinguishes genes of some human cancers from their normal counterparts. Nature 301:89–92

    Article  CAS  PubMed  Google Scholar 

  44. Whyte WA, Orlando DA, Hnisz D, Abraham BJ, Lin CY, Kagey MH, Rahl PB, Lee TI, Young RA (2013) Master transcription factors and mediator establish super-enhancers at key cell identity genes. Cell 153:307–319

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  45. Hnisz D, Abraham BJ, Lee TI, Lau A, Saint-Andre V, Sigova AA, Hoke HA, Young RA (2013) Super-enhancers in the control of cell identity and disease. Cell 155:934–947

    Article  CAS  PubMed  Google Scholar 

  46. Hsu PY, Hsu HK, Singer GA, Yan PS, Rodriguez BA, Liu JC, Weng YI, Deatherage DE, Chen Z, Pereira JS, Lopez R, Russo J, Wang Q, Lamartiniere CA, Nephew KP, Huang TH (2010) Estrogen-mediated epigenetic repression of large chromosomal regions through DNA looping. Genome Res 20:733–744

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  47. Davies MN, Volta M, Pidsley R, Lunnon K, Dixit A, Lovestone S, Coarfa C, Harris RA, Milosavljevic A, Troakes C, Al-Sarraj S, Dobson R, Schalkwyk LC, Mill J (2012) Functional annotation of the human brain methylome identifies tissue-specific epigenetic variation across brain and blood. Genome Biol 13:R43

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  48. Egelhofer TA, Minoda A, Klugman S, Lee K, Kolasinska-Zwierz P, Alekseyenko AA, Cheung MS, Day DS, Gadel S, Gorchakov AA, Gu T, Kharchenko PV, Kuan S, Latorre I, Linder-Basso D, Luu Y, Ngo Q, Perry M, Rechtsteiner A, Riddle NC, Schwartz YB, Shanower GA, Vielle A, Ahringer J, Elgin SC, Kuroda MI, Pirrotta V, Ren B, Strome S, Park PJ, Karpen GH, Hawkins RD, Lieb JD (2011) An assessment of histone-modification antibody quality. Nat Struct Mol Biol 18:91–93

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  49. Lieberman-Aiden E, van Berkum NL, Williams L, Imakaev M, Ragoczy T, Telling A, Amit I, Lajoie BR, Sabo PJ, Dorschner MO, Sandstrom R, Bernstein B, Bender MA, Groudine M, Gnirke A, Stamatoyannopoulos J, Mirny LA, Lander ES, Dekker J (2009) Comprehensive mapping of long-range interactions reveals folding principles of the human genome. Science 326:289–293

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  50. Fullwood MJ, Liu MH, Pan YF, Liu J, Xu H, Mohamed YB, Orlov YL, Velkov S, Ho A, Mei PH, Chew EG, Huang PY, Welboren WJ, Han Y, Ooi HS, Ariyaratne PN, Vega VB, Luo Y, Tan PY, Choy PY, Wansa KD, Zhao B, Lim KS, Leow SC, Yow JS, Joseph R, Li H, Desai KV, Thomsen JS, Lee YK, Karuturi RK, Herve T, Bourque G, Stunnenberg HG, Ruan X, Cacheux-Rataboul V, Sung WK, Liu ET, Wei CL, Cheung E, Ruan Y (2009) An oestrogen-receptor-alpha-bound human chromatin interactome. Nature 462:58–64

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  51. Zhao YQ, Jordan IK, Lunyak VV (2013) Epigenetics components of aging in the central nervous system. Neurotherapeutics 10:647–663

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  52. Ben-Avraham D, Muzumdar RH, Atzmon G (2012) Epigenetic genome-wide association methylation in aging and longevity. Epigenomics 4:503–509

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  53. Hong CP, Park J, Roh TY (2011) Epigenetic regulation in cell reprogramming revealed by genome-wide analysis. Epigenomics 3:73–81

    Article  CAS  PubMed  Google Scholar 

  54. Wills QF, Livak KJ, Tipping AJ, Enver T, Goldson AJ, Sexton DW, Holmes C (2013) Single-cell gene expression analysis reveals genetic associations masked in whole-tissue experiments. Nat Biotechnol 31:748–752

    Article  CAS  PubMed  Google Scholar 

  55. Zovkic IB, Guzman-Karlsson MC, Sweatt JD (2013) Epigenetic regulation of memory formation and maintenance. Learn Mem 20:61–74

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  56. Kantlehner M, Kirchner R, Hartmann P, Ellwart JW, Alunni-Fabbroni M, Schumacher A (2011) A high-throughput DNA methylation analysis of a single cell. Nucleic Acids Res 39:e44

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  57. Hayashi-Takanaka Y, Yamagata K, Wakayama T, Stasevich TJ, Kainuma T, Tsurimoto T, Tachibana M, Shinkai Y, Kurumizaka H, Nozaki N, Kimura H (2011) Tracking epigenetic histone modifications in single cells using Fab-based live endogenous modification labeling. Nucleic Acids Res 39:6475–6488

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  58. Robison AJ, Nestler EJ (2011) Transcriptional and epigenetic mechanisms of addiction. Nat Rev Neurosci 12:623–637

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  59. Zhang TY, Labonte B, Wen XL, Turecki G, Meaney MJ (2013) Epigenetic mechanisms for the early environmental regulation of hippocampal glucocorticoid receptor gene expression in rodents and humans. Neuropsychopharmacology 38:111–123

    Article  PubMed Central  PubMed  Google Scholar 

  60. Guerrero-Bosagna C, Savenkova M, Haque MM, Nilsson E, Skinner MK (2013) Environmentally induced epigenetic transgenerational inheritance of altered Sertoli cell transcriptome and epigenome: molecular etiology of male infertility. PLoS One 8:e59922

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  61. Berger SL, Kouzarides T, Shiekhattar R, Shilatifard A (2009) An operational definition of epigenetics. Genes Dev 23:781–783

    Article  CAS  PubMed Central  PubMed  Google Scholar 

Download references

Acknowledgements

The views expressed in this chapter are solely those of the authors and may not necessarily reflect those of NIH. The authors would like to thank all of the researchers associated with the NIH Roadmap Epigenomics Program for their tireless efforts to help transform this scientific field. We thank NIH senior leadership for their vision in selecting Epigenomics as a Common Fund program, especially Nora Volkow (NIDA), Linda Birnbaum (NIEHS), and James Battey (NIDCD). We thank the Common Fund Office of Science Coordination for financial support and encouragement. We thank the NIH Epigenomics Work Group members for their efforts and support during the development of this program. We especially thank Olivier Blondel, Mark Caulder, Christine Colvis, Stephanie Courchesne, Elise Feingold, Michelle Freund, Astrid Haugen, Tanya Hoodbhoy, Patricia Labosky, Roger Little, Pat Mastin, Michael Pazin, Phil Smith, Randall Stewart, and Elizabeth Wilder for their efforts in helping implement this program.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to John S. Satterlee Ph.D. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer Science+Business Media New York

About this protocol

Cite this protocol

Satterlee, J.S. et al. (2015). Community Resources and Technologies Developed Through the NIH Roadmap Epigenomics Program. In: Verma, M. (eds) Cancer Epigenetics. Methods in Molecular Biology, vol 1238. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-1804-1_2

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-1804-1_2

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-1803-4

  • Online ISBN: 978-1-4939-1804-1

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics