Skip to main content

The Parasympathetic Nervous System as a Regulator of Mast Cell Function

  • Protocol
  • First Online:
Mast Cells

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1220))

Abstract

Often considered as the archetype of neuroimmune communication, much of our understanding of the bidirectional relationship between the nervous and immune systems has come from the study of mast cell-nerve interaction. Mast cells play a role in resistance to infection and are extensively involved in inflammation and subsequent tissue repair. Thus, the relationship between mast cells and neurons enables the involvement of peripheral and central nervous systems in the regulation of host defense mechanisms and inflammation.

Recently, with the identification of the cholinergic anti-inflammatory pathway, there has been increased interest in the role of the parasympathetic nervous system in regulating immune responses. Classical neurotransmitters and neuropeptides released from cholinergic and inhibitory NANC neurons can modulate mast cell activity, and there is good evidence for the existence of parasympathetic nerve—mast cell functional units in the skin, lung, and intestine that have the potential to regulate a range of physiological processes.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Sternberg EM (2006) Neural regulation of innate immunity: a coordinated nonspecific host response to pathogens. Nat Rev Immunol 6:318–328

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  2. Kin NW, Sanders VM (2006) It takes nerve to tell T and B cells what to do. J Leukoc Biol 79:1093–1104

    Article  CAS  PubMed  Google Scholar 

  3. Wrona D (2006) Neural-immune interactions: an integrative view of the bidirectional relationship between the brain and immune systems. J Neuroimmunol 172:38–58

    Article  CAS  PubMed  Google Scholar 

  4. Theoharides TC (1996) The mast cell: a neuroimmunoendocrine master player. Int J Tissue React 18:1–21

    CAS  PubMed  Google Scholar 

  5. Frieling T, Cooke HJ, Wood JD (1991) Serotonin receptors on submucous neurons in guinea pig colon. Am J Physiol 261:G1017–G1023

    CAS  PubMed  Google Scholar 

  6. Frieling T, Cooke HJ, Wood JD (1993) Histamine receptors on submucous neurons in guinea pig colon. Am J Physiol 264:G74–G80

    CAS  PubMed  Google Scholar 

  7. van Houwelingen AH, Kool M, de Jager SCA et al (2002) Mast cell-derived TNF-{alpha} primes sensory nerve endings in a pulmonary hypersensitivity reaction. J Immunol 168:5297–5302

    Article  PubMed  Google Scholar 

  8. Leon A, Buriani A, Dal Toso R et al (1994) Mast cells synthesize, store, and release nerve growth factor. Proc Natl Acad Sci U S A 91:3739–3743

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  9. Kakurai M, Monteforte R, Suto H, Tsai M, Nakae S, Galli SJ (2006) Mast cell-derived tumor necrosis factor can promote nerve fiber elongation in the skin during contact hypersensitivity in mice. Am J Pathol 169:1713–1721

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  10. Arnett HA, Wang Y, Matsushima GK, Suzuki K, Ting JP (2003) Functional genomic analysis of remyelination reveals importance of inflammation in oligodendrocyte regeneration. J Neurosci 23:9824–9832

    CAS  PubMed  Google Scholar 

  11. Brann MR, Ellis J, Jorgensen H, Hill-Eubanks D, Jones SV (1993) Muscarinic acetylcholine receptor subtypes: localization and structure/function. Prog Brain Res 98:121–127

    Article  CAS  PubMed  Google Scholar 

  12. Wu J, Lukas RJ (2011) Naturally-expressed nicotinic acetylcholine receptor subtypes. Biochem Pharmacol 82:800–807

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  13. Kageyama-Yahara N, Suehiro Y, Yamamoto T, Kadowaki M (2008) IgE-induced degranulation of mucosal mast cells is negatively regulated via nicotinic acetylcholine receptors. Biochem Biophys Res Commun 377:321–325

    Article  CAS  PubMed  Google Scholar 

  14. Masini E, Fantozzi R, Conti A, Blandina P, Brunelleschi S, Mannaioni PF (1985) Mast cell heterogeneity in response to cholinergic stimulation. Int Arch Allergy Appl Immunol 77:184–185

    Article  CAS  PubMed  Google Scholar 

  15. Mishra NC, Rir-sima-ah J, Boyd RT et al (2010) Nicotine inhibits Fc epsilon RI-induced cysteinyl leukotrienes and cytokine production without affecting mast cell degranulation through alpha 7/alpha 9/alpha 10-nicotinic receptors. J Immunol 185:588–596

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  16. Weigand LA, Myers AC, Meeker S, Undem BJ (2009) Mast cell-cholinergic nerve interaction in mouse airways. J Physiol 587:3355–3362

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  17. Barnes PJ (1986) Non-adrenergic non-cholinergic neural control of human airways. Arch Int Pharmacodyn Ther 280:208–228

    CAS  PubMed  Google Scholar 

  18. Maier SF, Goehler LE, Fleshner M, Watkins LR (1998) The role of the vagus nerve in cytokine-to-brain communication. Ann N Y Acad Sci 840:289–300

    Article  CAS  PubMed  Google Scholar 

  19. Watkins LR, Goehler LE, Relton JK et al (1995) Blockade of interleukin-1 induced hyperthermia by subdiaphragmatic vagotomy: evidence for vagal mediation of immune-brain communication. Neurosci Lett 183:27–31

    Article  CAS  PubMed  Google Scholar 

  20. Tracey KJ (2002) The inflammatory reflex. Nature 420:853–859

    Article  CAS  PubMed  Google Scholar 

  21. Williams RM, Berthoud HR, Stead RH (1997) Vagal afferent nerve fibres contact mast cells in rat small intestinal mucosa. Neuroimmunomodulation 4:266–270

    CAS  PubMed  Google Scholar 

  22. Gottwald T, Lhotak S, Stead RH (1997) Effect of truncal vagotomy and capsaicin on mast cells and IgA-positive plasma cells in rat jejunal mucosa. Neurogastroenterol Motil 9:25–32

    Article  CAS  PubMed  Google Scholar 

  23. Gottwald TP, Hewlett BR, Lhotak S, Stead RH (1995) Electrical stimulation of the vagus nerve modulates the histamine content of mast cells in the rat jejunal mucosa. Neuroreport 7:313–317

    Article  CAS  PubMed  Google Scholar 

  24. Stead RH, Colley EC, Wang B et al (2006) Vagal influences over mast cells. Auton Neurosci 125:53–61

    Article  CAS  PubMed  Google Scholar 

  25. Borovikova LV, Ivanova S, Zhang M et al (2000) Vagus nerve stimulation attenuates the systemic inflammatory response to endotoxin. Nature 405:458–462

    Article  CAS  PubMed  Google Scholar 

  26. Ghia JE, Blennerhassett P, Kumar-Ondiveeran H, Verdu EF, Collins SM (2006) The vagus nerve: a tonic inhibitory influence associated with inflammatory bowel disease in a murine model. Gastroenterology 131:1122–1130

    Article  PubMed  Google Scholar 

  27. Wang H, Yu M, Ochani M et al (2003) Nicotinic acetylcholine receptor alpha7 subunit is an essential regulator of inflammation. Nature 421:384–388

    Article  CAS  PubMed  Google Scholar 

  28. van Westerloo DJ, Giebelen IA, Florquin S et al (2006) The vagus nerve and nicotinic receptors modulate experimental pancreatitis severity in mice. Gastroenterology 130:1822–1830

    Article  PubMed  Google Scholar 

  29. Pavlov VA, Ochani M, Yang LH et al (2007) Selective alpha7-nicotinic acetylcholine receptor agonist GTS-21 improves survival in murine endotoxemia and severe sepsis. Crit Care Med 35:1139–1144

    Article  CAS  PubMed  Google Scholar 

  30. Karimi K, Bienenstock J, Wang L, Forsythe P (2010) The vagus nerve modulates CD4+ T cell activity. Brain Behav Immun 24:316–323

    Article  CAS  PubMed  Google Scholar 

  31. Luyer MD, Greve JW, Hadfoune M, Jacobs JA, Dejong CH, Buurman WA (2005) Nutritional stimulation of cholecystokinin receptors inhibits inflammation via the vagus nerve. J Exp Med 202:1023–1029

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  32. Tracey KJ (2005) Fat meets the cholinergic antiinflammatory pathway. J Exp Med 202:1017–1021

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  33. Kindt F, Wiegand S, Niemeier V et al (2008) Reduced expression of nicotinic alpha subunits 3, 7, 9 and 10 in lesional and nonlesional atopic dermatitis skin but enhanced expression of alpha subunits 3 and 5 in mast cells. Br J Dermatol 159:847–857

    Article  CAS  PubMed  Google Scholar 

  34. Blandina P, Fantozzi R, Mannaioni PF, Masini E (1980) Characteristics of histamine release evoked by acetylcholine in isolated rat mast cells. J Physiol 301:281–293

    CAS  PubMed Central  PubMed  Google Scholar 

  35. Fantozzi R, Masini E, Blandina P, Mannaioni PF, Bani-Sacchi T (1978) Release of histamine from rat mast cells by acetylcholine. Nature 273:473–474

    Article  CAS  PubMed  Google Scholar 

  36. Leung KB, Pearce FL (1984) A comparison of histamine secretion from peritoneal mast cells of the rat and hamster. Br J Pharmacol 81:693–701

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  37. Kazimierczak W, Adamas B, Maslinski C (1980) Failure of acetylcholine to release histamine from rat mast cells. Agents Actions 10:1–3

    Article  CAS  PubMed  Google Scholar 

  38. Bani-Sacchi T, Barattini M, Bianchi S et al (1986) The release of histamine by parasympathetic stimulation in guinea-pig auricle and rat ileum. J Physiol 371:29–43

    CAS  PubMed Central  PubMed  Google Scholar 

  39. Vilim FS, Cropper EC, Price DA, Kupfermann I, Weiss KR (1996) Release of peptide cotransmitters in Aplysia: regulation and functional implications. J Neurosci 16:8105–8114

    CAS  PubMed  Google Scholar 

  40. Moffatt JD, Dumsday B, McLean JR (1999) Characterization of non-adrenergic, non-cholinergic inhibitory responses of the isolated guinea-pig trachea: differences between pre- and post-ganglionic nerve stimulation. Br J Pharmacol 128:458–464

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  41. Abad C, Gomariz RP, Waschek JA (2006) Neuropeptide mimetics and antagonists in the treatment of inflammatory disease: focus on VIP and PACAP. Curr Top Med Chem 6:151–163

    Article  CAS  PubMed  Google Scholar 

  42. Sherwood NM, Krueckl SL, McRory JE (2000) The origin and function of the pituitary adenylate cyclase-activating polypeptide (PACAP)/glucagon superfamily. Endocr Rev 21:619–670

    CAS  PubMed  Google Scholar 

  43. Goetzl EJ, Sreedharan SP, Turck CW (1988) Structurally distinctive vasoactive intestinal peptides from rat basophilic leukemia cells. J Biol Chem 263:9083–9086

    CAS  PubMed  Google Scholar 

  44. Wershil BK, Turck CW, Sreedharan SP et al (1993) Variants of vasoactive intestinal peptide in mouse mast cells and rat basophilic leukemia cells. Cell Immunol 151:369–378

    Article  CAS  PubMed  Google Scholar 

  45. Goetzl EJ, Pankhaniya RR, Gaufo GO, Mu Y, Xia M, Sreedharan SP (1998) Selectivity of effects of vasoactive intestinal peptide on macrophages and lymphocytes in compartmental immune responses. Ann N Y Acad Sci 840:540–550

    Article  CAS  PubMed  Google Scholar 

  46. Waschek JA, Bravo DT, Richards ML (1995) High levels of vasoactive intestinal peptide/pituitary adenylate cyclase-activating peptide receptor mRNA expression in primary and tumor lymphoid cells. Regul Pept 60:149–157

    Article  CAS  PubMed  Google Scholar 

  47. Kulka M, Sheen CH, Tancowny BP, Grammer LC, Schleimer RP (2008) Neuropeptides activate human mast cell degranulation and chemokine production. Immunology 123:398–410

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  48. Lowman MA, Benyon RC, Church MK (1988) Characterization of neuropeptide-induced histamine release from human dispersed skin mast cells. Br J Pharmacol 95:121–130

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  49. Undem BJ, Dick EC, Buckner CK (1983) Inhibition by vasoactive intestinal peptide of antigen-induced histamine release from guinea-pig minced lung. Eur J Pharmacol 88:247–250

    Article  CAS  PubMed  Google Scholar 

  50. Tuncel N, Tore F, Sahinturk V, Ak D, Tuncel M (2000) Vasoactive intestinal peptide inhibits degranulation and changes granular content of mast cells: a potential therapeutic strategy in controlling septic shock. Peptides 21:81–89

    Article  CAS  PubMed  Google Scholar 

  51. Akahoshi M, Song CH, Piliponsky AM et al (2011) Mast cell chymase reduces the toxicity of Gila monster venom, scorpion venom, and vasoactive intestinal polypeptide in mice. J Clin Invest 121:4180–4191

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  52. Caughey GH, Leidig F, Viro NF, Nadel JA (1988) Substance P and vasoactive intestinal peptide degradation by mast cell tryptase and chymase. J Pharmacol Exp Ther 244:133–137

    CAS  PubMed  Google Scholar 

  53. Tam EK, Caughey GH (1990) Degradation of airway neuropeptides by human lung tryptase. Am J Respir Cell Mol Biol 3:27–32

    Article  CAS  PubMed  Google Scholar 

  54. Tuncel N, Sener E, Cerit C et al (2005) Brain mast cells and therapeutic potential of vasoactive intestinal peptide in a Parkinson’s disease model in rats: brain microdialysis, behavior, and microscopy. Peptides 26:827–836

    Article  CAS  PubMed  Google Scholar 

  55. El-Shazly A, Berger P, Girodet PO et al (2006) Fraktalkine produced by airway smooth muscle cells contributes to mast cell recruitment in asthma. J Immunol 176:1860–1868

    Article  CAS  PubMed  Google Scholar 

  56. Rimaniol AC, Till SJ, Garcia G et al (2003) The CX3C chemokine fractalkine in allergic asthma and rhinitis. J Allergy Clin Immunol 112:1139–1146

    Article  CAS  PubMed  Google Scholar 

  57. Groneberg DA, Springer J, Fischer A (2001) Vasoactive intestinal polypeptide as mediator of asthma. Pulm Pharmacol Ther 14:391–401

    Article  CAS  PubMed  Google Scholar 

  58. Forsythe P, Gilchrist M, Kulka M, Befus AD (2001) Mast cells and nitric oxide: control of production, mechanisms of response. Int Immunopharmacol 1:1525–1541

    Article  CAS  PubMed  Google Scholar 

  59. Iikura M, Takaishi T, Hirai K et al (1998) Exogenous nitric oxide regulates the degranulation of human basophils and rat peritoneal mast cells. Int Arch Allergy Immunol 115:129–136

    Article  CAS  PubMed  Google Scholar 

  60. Peh KH, Moulson A, Wan BY, Assem EK, Pearce FL (2001) Role of nitric oxide in histamine release from human basophils and rat peritoneal mast cells. Eur J Pharmacol 425:229–238

    Article  CAS  PubMed  Google Scholar 

  61. Eastmond NC, Banks EM, Coleman JW (1997) Nitric oxide inhibits IgE-mediated degranulation of mast cells and is the principal intermediate in IFN-gamma-induced suppression of exocytosis. J Immunol 159:1444–1450

    CAS  PubMed  Google Scholar 

  62. Bidri M, Becherel PA, Le Goff L et al (1995) Involvement of cyclic nucleotides in the immunomodulatory effects of nitric oxide on murine mast cells. Biochem Biophys Res Commun 210:507–517

    Article  CAS  PubMed  Google Scholar 

  63. Davis BJ, Flanagan BF, Gilfillan AM, Metcalfe DD, Coleman JW (2004) Nitric oxide inhibits IgE-dependent cytokine production and Fos and Jun activation in mast cells. J Immunol 173:6914–6920

    Article  CAS  PubMed  Google Scholar 

  64. Forsythe P, Befus AD (2003) Inhibition of calpain is a component of nitric oxide-induced down-regulation of human mast cell adhesion. J Immunol 170:287–293

    Article  CAS  PubMed  Google Scholar 

  65. Kanwar S, Wallace JL, Befus D, Kubes P (1994) Nitric oxide synthesis inhibition increases epithelial permeability via mast cells. Am J Physiol 266:G222–G229

    CAS  PubMed  Google Scholar 

  66. Qiu B, Pothoulakis C, Castagliuolo I, Nikulasson Z, LaMont JT (1996) Nitric oxide inhibits rat intestinal secretion by Clostridium difficile toxin A but not Vibrio cholerae enterotoxin. Gastroenterology 111:409–418

    Article  CAS  PubMed  Google Scholar 

  67. Costantini TW, Bansal V, Krzyzaniak M et al (2010) Vagal nerve stimulation protects against burn-induced intestinal injury through activation of enteric glia cells. Am J Physiol Gastrointest Liver Physiol 299:G1308–G1318

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  68. Krzyzaniak M, Peterson C, Loomis W et al (2011) Postinjury vagal nerve stimulation protects against intestinal epithelial barrier breakdown. J Trauma 70:1168–1175, discussion 1175–6

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  69. Carr MJ, Undem BJ (2003) Bronchopulmonary afferent nerves. Respirology 8:291–301

    Article  PubMed  Google Scholar 

  70. Andersson RG, Grundstrom N (1987) Innervation of airway smooth muscle. Efferent mechanisms. Pharmacol Ther 32:107–130

    Article  CAS  PubMed  Google Scholar 

  71. Kowalski ML, Didier A, Lundgren JD, Igarashi Y, Kaliner MA (1997) Role of sensory innervation and mast cells in neurogenic plasma protein exudation into the airway lumen. Respirology 2:267–274

    Article  CAS  PubMed  Google Scholar 

  72. Undem BJ, Riccio MM, Weinreich D, Ellis JL, Myers AC (1995) Neurophysiology of mast cell-nerve interactions in the airways. Int Arch Allergy Immunol 107:199–201

    Article  CAS  PubMed  Google Scholar 

  73. Akiyama H, Amano H, Bienenstock J (2005) Rat tracheal epithelial responses to water avoidance stress. J Allergy Clin Immunol 116:318–324

    Article  PubMed  Google Scholar 

  74. Sestini P, Bienenstock J, Crowe SE et al (1990) Ion transport in rat tracheal epithelium in vitro. Role of capsaicin-sensitive nerves in allergic reactions. Am Rev Respir Dis 141:393–397

    Article  CAS  PubMed  Google Scholar 

  75. Forsythe P, McGarvey LP, Heaney LG, MacMahon J, Ennis M (2000) Sensory neuropeptides induce histamine release from bronchoalveolar lavage cells in both nonasthmatic coughers and cough variant asthmatics. Clin Exp Allergy 30:225–232

    Article  CAS  PubMed  Google Scholar 

  76. Cyphert JM, Kovarova M, Allen IC et al (2009) Cooperation between mast cells and neurons is essential for antigen-mediated bronchoconstriction. J Immunol 182:7430–7439

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  77. Myers AC, Undem BJ, Weinreich D (1991) Influence of antigen on membrane properties of guinea pig bronchial ganglion neurons. J Appl Physiol 71:970–976

    CAS  PubMed  Google Scholar 

  78. Kajekar R, Undem BJ, Myers AC (2003) Role of cyclooxygenase activation and prostaglandins in antigen-induced excitability changes of bronchial parasympathetic ganglia neurons. Am J Physiol Lung Cell Mol Physiol 284:L581–L587

    CAS  PubMed  Google Scholar 

  79. Mitchell RW, Ndukuw IM, Ikeda K, Arbetter K, Leff AR (1993) Effect of immune sensitization on stimulated ACh release from trachealis muscle in vitro. Am J Physiol 265:L13–L18

    CAS  PubMed  Google Scholar 

  80. Larsen GL, Fame TM, Renz H et al (1994) Increased acetylcholine release in tracheas from allergen-exposed IgE-immune mice. Am J Physiol 266:L263–L270

    CAS  PubMed  Google Scholar 

  81. Razavi R, Chan Y, Afifiyan FN et al (2006) TRPV1+ sensory neurons control beta cell stress and islet inflammation in autoimmune diabetes. Cell 127:1123–1135

    Article  CAS  PubMed  Google Scholar 

  82. Forsythe P, Ennis M (2000) Clinical consequences of mast cell heterogeneity. Inflamm Res 49:147–154

    Article  CAS  PubMed  Google Scholar 

  83. Moon TC, St Laurent CD, Morris KE et al (2010) Advances in mast cell biology: new understanding of heterogeneity and function. Mucosal Immunol 3:111–128

    Article  CAS  PubMed  Google Scholar 

  84. Shanahan F, Denburg JA, Fox J, Bienenstock J, Befus D (1985) Mast cell heterogeneity: effects of neuroenteric peptides on histamine release. J Immunol 135:1331–1337

    CAS  PubMed  Google Scholar 

  85. Kitamura Y, Kanakura Y, Sonoda S, Asai H, Nakano T (1987) Mutual phenotypic changes between connective tissue type and mucosal mast cells. Int Arch Allergy Appl Immunol 82:244–248

    Article  CAS  PubMed  Google Scholar 

  86. Theoharides TC, Zhang B, Kempuraj D et al (2010) IL-33 augments substance P-induced VEGF secretion from human mast cells and is increased in psoriatic skin. Proc Natl Acad Sci U S A 107:4448–4453

    Article  CAS  PubMed Central  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Paul Forsythe Ph.D. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer Science+Business Media New York

About this protocol

Cite this protocol

Forsythe, P. (2015). The Parasympathetic Nervous System as a Regulator of Mast Cell Function. In: Hughes, M., McNagny, K. (eds) Mast Cells. Methods in Molecular Biology, vol 1220. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-1568-2_9

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-1568-2_9

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-1567-5

  • Online ISBN: 978-1-4939-1568-2

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics