Skip to main content

Techniques to Study Epigenetic Control and the Epigenome in Parasites

  • Protocol
  • First Online:
Parasite Genomics Protocols

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1201))

Abstract

Epigenetics is the study of heritable changes in gene expression that occur independent of the DNA sequence. Due to their intimacy with DNA, histones have a central role in chromatin structure and epigenetic regulation. Their tails are subject to posttranslational modifications (PTMs) that together with chromatin-remodeling proteins control the access of different proteins to DNA and allow a precise response to different environmental conditions. The first part of this chapter is dedicated to histone enrichment methods that allow the study of histones using techniques such as immunoblot or mass spectrometry for the mapping of the histone PTM network. Next we describe chromatin immunoprecipitation-based techniques (ChIP) for study of the epigenome. ChIP followed by microarray or next-generation sequencing enables the precise genomic localization of protein-DNA interactions. These techniques for genome-wide profiling of chromatin provide powerful and efficient tools to study the epigenome.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Strahl BD, Allis CD (2000) The language of covalent histone modifications. Nature 403:41–45

    Article  CAS  PubMed  Google Scholar 

  2. Kouzarides T (2007) Chromatin modifications and their function. Cell 128:693–705

    Article  CAS  PubMed  Google Scholar 

  3. Goldberg AD, Allis CD, Bernstein E (2007) Epigenetics: a landscape takes shape. Cell 128:635–638

    Article  CAS  PubMed  Google Scholar 

  4. Sullivan WJ Jr, Naguleswaran A, Angel SO (2006) Histones and histone modifications in protozoan parasites. Cell Microbiol 8:1850–1861

    Article  CAS  PubMed  Google Scholar 

  5. Bougdour A, Braun L, Cannella D et al (2010) Chromatin modifications: implications in the regulation of gene expression in Toxoplasma gondii. Cell Microbiol 12:413–423

    Article  CAS  PubMed  Google Scholar 

  6. Saksouk N, Bhatti MM, Kieffer S et al (2005) Histone-modifying complexes regulate gene expression pertinent to the differentiation of the protozoan parasite Toxoplasma gondii. Mol Cell Biol 25:10301–10314

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  7. Hakimi MA, Deitsch KW (2007) Epigenetics in Apicomplexa: control of gene expression during cell cycle progression, differentiation and antigenic variation. Curr Opin Microbiol 10:357–362

    Article  CAS  PubMed  Google Scholar 

  8. Croken MM, Nardelli SC, Kim K (2012) Chromatin modifications, epigenetics, and how protozoan parasites regulate their lives. Trends Parasitol 28(5):202–213

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  9. Olins DE, Olins AL (2003) Chromatin history: our view from the bridge, Nature reviews. Mol Cell Biol 4:809–814

    CAS  Google Scholar 

  10. Shechter D, Dormann HL, Allis CD et al (2007) Extraction, purification and analysis of histones. Nat Protoc 2:1445–1457

    Article  CAS  PubMed  Google Scholar 

  11. Murray K (1966) The acid extraction of histones from calf thymus deoxyribonucleoprotein. J Mol Biol 15:409–419

    Article  CAS  PubMed  Google Scholar 

  12. Stedman E (1950) Cell specificity of histones. Nature 166:780–781

    Article  CAS  PubMed  Google Scholar 

  13. von Holt C, Brandt WF, Greyling HJ et al (1989) Isolation and characterization of histones. Methods Enzymol 170:431–523

    Article  Google Scholar 

  14. Toro GC, Galanti N (1990) Trypanosoma cruzi histones. Further characterization and comparison with higher eukaryotes. Biochem Int 21:481–490

    CAS  PubMed  Google Scholar 

  15. Solomon MJ, Larsen PL, Varshavsky A (1988) Mapping protein-DNA interactions in vivo with formaldehyde: evidence that histone H4 is retained on a highly transcribed gene. Cell 53:937–947

    Article  CAS  PubMed  Google Scholar 

  16. Gilmour DS, Lis JT (1984) Detecting protein-DNA interactions in vivo: distribution of RNA polymerase on specific bacterial genes. Proc Natl Acad Sci U S A 81:4275–4279

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  17. Ren B, Robert F, Wyrick JJ et al (2000) Genome-wide location and function of DNA binding proteins. Science 290:2306–2309

    Article  CAS  PubMed  Google Scholar 

  18. Lee TI, Rinaldi NJ, Robert F et al (2002) Transcriptional regulatory networks in Saccharomyces cerevisiae. Science 298:799–804

    Article  CAS  PubMed  Google Scholar 

  19. Park PJ (2009) ChIP-seq: advantages and challenges of a maturing technology, Nature reviews. Genetics 10:669–680

    PubMed Central  CAS  PubMed  Google Scholar 

  20. Goren A, Ozsolak F, Shoresh N et al (2010) Chromatin profiling by directly sequencing small quantities of immunoprecipitated DNA. Nat Methods 7:47–49

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  21. Johnson DS, Mortazavi A, Myers RM et al (2007) Genome-wide mapping of in vivo protein-DNA interactions. Science 316:1497–1502

    Article  CAS  PubMed  Google Scholar 

  22. Barski A, Cuddapah S, Cui K et al (2007) High-resolution profiling of histone methylations in the human genome. Cell 129:823–837

    Article  CAS  PubMed  Google Scholar 

  23. Hecht A, Strahl-Bolsinger S, Grunstein M (1996) Spreading of transcriptional repressor SIR3 from telomeric heterochromatin. Nature 383:92–96

    Article  CAS  PubMed  Google Scholar 

  24. Rundlett SE, Carmen AA, Suka N et al (1998) Transcriptional repression by UME6 involves deacetylation of lysine 5 of histone H4 by RPD3. Nature 392:831–835

    Article  CAS  PubMed  Google Scholar 

  25. Orlando V (2000) Mapping chromosomal proteins in vivo by formaldehyde-crosslinked-chromatin immunoprecipitation. Trends Biochem Sci 25:99–104

    Article  CAS  PubMed  Google Scholar 

  26. O’Neill LP, Turner BM (2003) Immunoprecipitation of native chromatin: NChIP. Methods 31:76–82

    Article  PubMed  Google Scholar 

  27. Schones DE, Cui K, Cuddapah S et al (2008) Dynamic regulation of nucleosome positioning in the human genome. Cell 132:887–898

    Article  CAS  PubMed  Google Scholar 

  28. Iyer VR, Horak CE, Scafe CS et al (2001) Genomic binding sites of the yeast cell-cycle transcription factors SBF and MBF. Nature 409:533–538

    Article  CAS  PubMed  Google Scholar 

  29. Buck MJ, Lieb JD (2004) ChIP-chip: considerations for the design, analysis, and application of genome-wide chromatin immunoprecipitation experiments. Genomics 83:349–360

    Article  CAS  PubMed  Google Scholar 

  30. Shendure J, Ji H (2008) Next-generation DNA sequencing. Nat Biotechnol 26:1135–1145

    Article  CAS  PubMed  Google Scholar 

  31. Mardis ER (2008) Next-generation DNA sequencing methods. Annu Rev Genomics Hum Genet 9:387–402

    Article  CAS  PubMed  Google Scholar 

  32. Margulies M, Egholm M, Altman WE et al (2005) Genome sequencing in microfabricated high-density picolitre reactors. Nature 437:376–380

    PubMed Central  CAS  PubMed  Google Scholar 

  33. Bentley DR (2006) Whole-genome re-sequencing. Curr Opin Genet Dev 16:545–552

    Article  CAS  PubMed  Google Scholar 

  34. Metzker ML (2010) Sequencing technologies—the next generation, Nature reviews. Genetics 11:31–46

    CAS  PubMed  Google Scholar 

  35. Wang Z, Gerstein M, Snyder M (2009) RNA-Seq: a revolutionary tool for transcriptomics, Nature reviews. Genetics 10:57–63

    PubMed Central  CAS  PubMed  Google Scholar 

  36. Salcedo-Amaya AM, van Driel MA, Alako BT et al (2009) Dynamic histone H3 epigenome marking during the intraerythrocytic cycle of Plasmodium falciparum. Proc Natl Acad Sci U S A 106:9655–9660

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  37. Flueck C, Bartfai R, Niederwieser I et al (2010) A major role for the Plasmodium falciparum ApiAP2 protein PfSIP2 in chromosome end biology. PLoS Pathog 6:e1000784

    Article  PubMed Central  PubMed  Google Scholar 

  38. Brooks CF, Francia ME, Gissot M et al (2011) Toxoplasma gondii sequesters centromeres to a specific nuclear region throughout the cell cycle. Proc Natl Acad Sci U S A 108:3767–3772

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  39. Lopez-Rubio JJ, Mancio-Silva L, Scherf A (2009) Genome-wide analysis of heterochromatin associates clonally variant gene regulation with perinuclear repressive centers in malaria parasites. Cell Host Microbe 5:179–190

    Article  CAS  PubMed  Google Scholar 

  40. Gissot M, Kelly KA, Ajioka JW et al (2007) Epigenomic modifications predict active promoters and gene structure in Toxoplasma gondii. PLoS Pathog 3:e77

    Article  PubMed Central  PubMed  Google Scholar 

  41. Siegel TN, Hekstra DR, Kemp LE et al (2009) Four histone variants mark the boundaries of polycistronic transcription units in Trypanosoma brucei. Genes Dev 23:1063–1076

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  42. Bartfai R, Hoeijmakers WA, Salcedo-Amaya AM et al (2010) H2A.Z demarcates intergenic regions of the plasmodium falciparum epigenome that are dynamically marked by H3K9ac and H3K4me3. PLoS Pathog 6:e1001223

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  43. Kozarewa I, Ning Z, Quail MA et al (2009) Amplification-free Illumina sequencing-library preparation facilitates improved mapping and assembly of (G + C)-biased genomes. Nat Methods 6:291–295

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  44. Carey MF, Peterson CL, Smale ST (2009) Chromatin immunoprecipitation (ChIP). Cold Spring Harbor protocols, pdb prot5279.

    Google Scholar 

Download references

Acknowledgement

This work was supported by NIH grants RC4AI092801 (KK), R01AI087625 (KK), and 5T32AI070117-04 (SCN). We thank members of the Kim laboratory for review and helpful suggestions for this chapter.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kami Kim .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer Science+Business Media New York

About this protocol

Cite this protocol

Nardelli, S.C., Ting, LM., Kim, K. (2015). Techniques to Study Epigenetic Control and the Epigenome in Parasites. In: Peacock, C. (eds) Parasite Genomics Protocols. Methods in Molecular Biology, vol 1201. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-1438-8_10

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-1438-8_10

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-1437-1

  • Online ISBN: 978-1-4939-1438-8

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics