Skip to main content

High-Density Tiling Microarray Analysis of the Full Transcriptional Activity of Yeast

  • Protocol
  • First Online:

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1205))

Abstract

Understanding the relationship between DNA sequence variation and phenotypic variation in complex or quantitative traits is one of the major challenges in modern biology. We are witnessing a deluge of DNA sequence information and association studies of genetic polymorphisms with phenotypes of interest in families and populations. In addition, it has become clear that large portions of eukaryotic genomes beyond protein-coding genes are transcribed, generating numerous noncoding RNA (ncRNA) molecules whose functions remain mostly unknown.

DNA oligonucleotide microarrays constitute a powerful technology for studying the expression of genes in different organisms. The Saccharomyces cerevisiae tiling array presents a significant advance over previous array-based platforms. It has a high density of overlapping probes that start on average every 8 bp along each strand of the genome, enabling precise definition of transcript structure. Furthermore, the array includes probes specific for the polymorphic positions of another, distantly related yeast strain, allowing accurate measurement of allele-specific expression in a hybrid of the two strains. This technology thus allows high-resolution, quantitative, strand- and allele-specific measurements of transcription from a full eukaryotic genome. In this chapter, we describe the methods for extracting RNA, synthesizing first-strand cDNA, fragmenting, and labeling of samples for hybridization to the tiling array. Combining genome-wide information on variation in DNA sequence with variation in transcript structure and levels promises to increase our understanding of the genotype-to-phenotype relationship.

This is a preview of subscription content, log in via an institution.

Buying options

Protocol
USD   49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Springer Nature is developing a new tool to find and evaluate Protocols. Learn more

References

  1. Mackay TFC (2001) The genetic architecture of quantitative traits. Annu Rev Genet 35:303–339

    Article  PubMed  CAS  Google Scholar 

  2. Mackay TFC, Stone EA, Ayroles JF (2009) The genetics of quantitative traits: challenges and prospects. Nat Rev Genet 10:565–577

    Article  PubMed  CAS  Google Scholar 

  3. Manolio TA, Collins FS, Cox NJ et al (2009) Finding the missing heritability of complex diseases. Nature 461:747–753

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  4. Dinger ME, Amaral PP, Mercer TR et al (2009) Pervasive transcription of the eukaryotic genome: functional indices and conceptual implications. Brief Funct Genomic Proteomic 8:407–423

    Article  PubMed  CAS  Google Scholar 

  5. Sieberts S, Schadt E (2007) Moving toward a system genetics view of disease. Mamm Genome 18:389–401

    Article  PubMed  PubMed Central  Google Scholar 

  6. Amaral PP, Dinger ME, Mercer TR et al (2008) The eukaryotic genome as an RNA machine. Science 319:1787–1789

    Article  PubMed  CAS  Google Scholar 

  7. Mattick JS (2011) The central role of RNA in human development and cognition. FEBS Lett 585:1600–1616

    Article  PubMed  CAS  Google Scholar 

  8. Lockhart DJ, Dong H, Byrne MC et al (1996) Expression monitoring by hybridization to high-density oligonucleotide arrays. Nat Biotechnol 14:1675–1680

    Article  PubMed  CAS  Google Scholar 

  9. Schena M, Shalon D, Davis RW et al (1995) Quantitative monitoring of gene expression patterns with a complementary DNA microarray. Science 270:467–470

    Article  PubMed  CAS  Google Scholar 

  10. Wodicka L, Dong H, Mittmann M et al (1997) Genome-wide expression monitoring in Saccharomyces cerevisiae. Nat Biotechnol 15: 1359–1367

    Article  PubMed  CAS  Google Scholar 

  11. David L, Huber W, Granovskaia M et al (2006) A high-resolution map of transcription in the yeast genome. Proc Natl Acad Sci U S A 103: 5320–5325

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  12. Kapranov P, Cawley SE, Drenkow J et al (2002) Large-scale transcriptional activity in chromosomes 21 and 22. Science 296:916–919

    Article  PubMed  CAS  Google Scholar 

  13. Selinger DW, Cheung KJ, Mei R et al (2000) RNA expression analysis using a 30 base pair resolution Escherichia coli genome array. Nat Biotechnol 18:1262–1268

    Article  PubMed  CAS  Google Scholar 

  14. Tjaden B, Saxena RM, Stolyar S et al (2002) Transcriptome analysis of Escherichia coli using high-density oligonucleotide probe arrays. Nucleic Acids Res 30:3732–3738

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  15. Yamada K, Lim J, Dale JM et al (2003) Empirical analysis of transcriptional activity in the Arabidopsis genome. Science 302: 842–846

    Article  PubMed  CAS  Google Scholar 

  16. Wei W, McCusker JH, Hyman RW et al (2007) Genome sequencing and comparative analysis of Saccharomyces cerevisiae strain YJM789. Proc Natl Acad Sci U S A 104:12825–12830

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  17. Gagneur J, Sinha H, Perocchi F et al (2009) Genome-wide allele- and strand-specific expression profiling. Mol Syst Biol 5:274

    Article  PubMed  PubMed Central  Google Scholar 

  18. Perocchi F, Xu Z, Clauder-Munster S et al (2007) Antisense artifacts in transcriptome microarray experiments are resolved by actinomycin D. Nucleic Acids Res 35:e128

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lars M. Steinmetz .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media New York

About this protocol

Cite this protocol

David, L., Clauder-Münster, S., Steinmetz, L.M. (2014). High-Density Tiling Microarray Analysis of the Full Transcriptional Activity of Yeast. In: Smith, J., Burke, D. (eds) Yeast Genetics. Methods in Molecular Biology, vol 1205. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-1363-3_16

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-1363-3_16

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-1362-6

  • Online ISBN: 978-1-4939-1363-3

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics