Skip to main content

Capillary-Based Lectin Affinity Electrophoresis for Interaction Analysis Between Lectins and Glycans

  • Protocol
  • First Online:
Lectins

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1200))

Abstract

Capillary affinity electrophoresis (CAE) is a powerful technique for glycan analysis, and one of the analytical approaches for analyzing the interaction between lectins and glycans. The method is based on the high-resolution separation of fluorescently labeled glycans by capillary electrophoresis (CE) with laser-induced fluorescence detection (LIF) in the presence of lectins (or glycan binding proteins). CAE allows simultaneous determination of glycan structures in a complex mixture of glycans. In addition, we can calculate the binding kinetics on a specific glycan in the complex mixture of glycans with a lectin. Here, we show detailed procedures for capillary affinity electrophoresis of fluorescently labeled glycans with lectins using CE-LIF apparatus. Its application to screening a sialic acid binding protein in plant barks is also shown.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Chen FT, Evangelista RA (1995) Analysis of mono- and oligosaccharide isomers derivatized with 9-aminopyrene-1,4,6-trisulfonate by capillary electrophoresis with laser-induced fluorescence. Anal Biochem 230:273–280

    Article  CAS  Google Scholar 

  2. Guttman A, Pritchett T (1995) Capillary gel electrophoresis separation of high-mannose type oligosaccharides derivatized by 1-aminopyrene-3,6,8-trisulfonic acid. Electrophoresis 16: 1906–1911

    Article  PubMed  CAS  Google Scholar 

  3. Chen F, Dobashi TS, Evangelista RA (1998) Quantitative analysis of sugar constituents of glycoproteins by capillary electrophoresis. Glycobiology 8:1045–1052

    Article  PubMed  CAS  Google Scholar 

  4. Chen F, Evangelista R (1998) Profiling glycoprotein n-linked oligosaccharide by capillary electrophoresis. Electrophoresis 19: 2639–2644

    Article  PubMed  CAS  Google Scholar 

  5. Anumula KR, Dhume ST (1998) High resolution and high sensitivity methods for oligosaccharide mapping and characterization by normal phase high performance liquid chromatography following with highly derivatization fluorescent anthranilic acid. Glycobiology 8:685–694

    Article  PubMed  CAS  Google Scholar 

  6. Kamoda S, Nomura C, Kinoshita M, Nishiura S, Ishikawa R, Kakehi K, Kawasaki N, Hayakawa T (2004) Profiling analysis of oligosaccharides in antibody pharmaceuticals by capillary electrophoresis. J Chromatogr A 1050:211–216

    Article  PubMed  CAS  Google Scholar 

  7. Kakehi K, Kinoshita M, Kawakami D, Tanaka J, Sei K, Endo K, Oda Y, Iwaki M, Masuko T (2001) Capillary electrophoresis of sialic acid-containing glycoprotein. Effect of the heterogeneity of carbohydrate chains on glycoform separation using an alpha1-acid glycoprotein as a model. Anal Chem 73:2640–2647

    Article  PubMed  CAS  Google Scholar 

  8. Kakehi K, Funakubo T, Suzuki S, Oda Y, Kitada Y (1999) 3-Aminobenzamide and 3-aminobenzoic acid, tags for capillary electrophoresis of complex carbohydrates with laser-induced fluorescent detection. J Chromatogr A 863:205–218

    Article  PubMed  CAS  Google Scholar 

  9. Shimura K, Kasai K (1995) Determination of the affinity constants of concanavalin A for monosaccharides by fluorescence affinity probe capillary electrophoresis. Anal Biochem 227:186–194

    Article  PubMed  CAS  Google Scholar 

  10. Uegaki K, Taga A, Akada Y, Suzuki S, Honda S (2002) Simultaneous determination of the association constants of oligosaccharides to a lectin by capillary electrophoresis. Anal Biochem 309:269–278

    Article  PubMed  CAS  Google Scholar 

  11. Oda Y, Senaha T, Matsuno Y, Nakajima K, Naka R, Kinoshita M, Honda E, Furuta I, Kakehi K (2003) A new fungal lectin recognizing alpha(1-6)-linked fucose in the N-glycan. J Biol Chem 278:32439–32447

    Article  PubMed  CAS  Google Scholar 

  12. Nakajima K, Oda Y, Kinoshita M, Kakehi K (2003) Capillary affinity electrophoresis for the screening of post-translational modification of proteins with carbohydrates. J Proteome Res 2:81–88

    Article  PubMed  CAS  Google Scholar 

  13. Nakajima K, Kinoshita M, Matsushita N, Urashima T, Suzuki M, Suzuki A, Kakehi K (2006) Capillary affinity electrophoresis using lectins for the analysis of milk oligosaccharide structure and its application to bovine colostrum oligosaccharides. Anal Biochem 348:105–114

    Article  PubMed  CAS  Google Scholar 

  14. Nakajima K, Kinoshita M, Oda Y, Masuko T, Kaku H, Shibuya N, Kakehi K (2004) Screening method of carbohydrate-binding proteins in biological sources by capillary affinity electrophoresis and its application to determination of Tulipa gesneriana agglutinin in tulip bulbs. Glycobiology 14:793–804

    Article  PubMed  CAS  Google Scholar 

  15. Kinoshita M, Kakehi K (2005) Analysis of the interaction between hyaluronan and hyaluronan-binding proteins by capillary affinity electrophoresis: significance of hyaluronan molecular size on binding reaction. J Chromatogr B Analyt Technol Biomed Life Sci 816:289–295

    Article  PubMed  CAS  Google Scholar 

  16. Oda Y, Nakayama K, Abdul-Rahman B, Kinoshita M, Hashimoto O, Kawasaki N, Hayakawa T, Kakehi K, Tomiya N, Lee YC (2000) Crocus sativus lectin recognizes Man3GlcNAc in the N-glycan core structure. J Biol Chem 275:26772–26779

    PubMed  CAS  Google Scholar 

  17. Kaku H, Tanaka Y, Tazaki K, Minami E, Mizuno H, Shibuya N (1996) Sialylated oligosaccharide-specific plant lectin from Japanese elderberry (Sambucus sieboldiana) bark tissue has a homologous structure to type II ribosome-inactivating proteins, ricin and abrin. cDNA cloning and molecular modeling study. J Biol Chem 271:1480–1485

    Article  PubMed  CAS  Google Scholar 

  18. Rojo MA, Yato M, Ishii-Minami N, Minami E, Kaku H, Citores L, Girbés T, Shibuya N (1997) Isolation, cDNA cloning, biological properties, and carbohydrate binding specificity of sieboldin-b, a type II ribosome-inactivating protein from the bark of Japanese elderberry (Sambucus sieboldiana). Arch Biochem Biophys 340:185–194

    Article  PubMed  CAS  Google Scholar 

  19. Naka R, Kamoda S, Ishizuka A, Kinoshita M, Kakehi K (2006) Analysis of total N-glycans in cell membrane fractions of cancer cells using a combination of serotonin affinity chromatography and normal phase chromatography. J Proteome Res 5(1):88–97

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media New York

About this protocol

Cite this protocol

Kinoshita, M., Kakehi, K. (2014). Capillary-Based Lectin Affinity Electrophoresis for Interaction Analysis Between Lectins and Glycans. In: Hirabayashi, J. (eds) Lectins. Methods in Molecular Biology, vol 1200. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-1292-6_12

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-1292-6_12

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-1291-9

  • Online ISBN: 978-1-4939-1292-6

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics