Skip to main content
Book cover

Hox Genes pp 319–348Cite as

Hox Protein Interactions: Screening and Network Building

  • Protocol
  • First Online:

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1196))

Abstract

Understanding the mode of action of Hox proteins requires the identification of molecular and cellular pathways they take part in. This includes to characterize the networks of protein-protein interactions involving Hox proteins. In this chapter we propose a strategy and methods to map Hox interaction networks, from yeast two-hybrid and high-throughput yeast two-hybrid interaction screening to bioinformatic analyses based on the software platform Cytoscape.

This is a preview of subscription content, log in via an institution.

Buying options

Protocol
USD   49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   139.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Springer Nature is developing a new tool to find and evaluate Protocols. Learn more

References

  1. Forlani S, Lawson KA, Deschamps J (2003) Acquisition of Hox codes during gastrulation and axial elongation in the mouse embryo. Development 130:3807–3819

    Article  CAS  PubMed  Google Scholar 

  2. Mallo M, Wellik DM, Deschamps J (2010) Hox genes and regional patterning of the vertebrate body plan. Dev Biol 344:7–15

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  3. Wellik DM (2009) Hox genes and vertebrate axial pattern. Curr Top Dev Biol 88:257–278

    Article  CAS  PubMed  Google Scholar 

  4. Zakany J, Duboule D (2007) The role of Hox genes during vertebrate limb development. Curr Opin Genet Dev 17:359–366

    Article  CAS  PubMed  Google Scholar 

  5. Chen F, Capecchi MR (1999) Paralogous mouse Hox genes, Hoxa9, Hoxb9, and Hoxd9, function together to control development of the mammary gland in response to pregnancy. Proc Natl Acad Sci U S A 96:541–546

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  6. Garin É, Lemieux M, Coulombe Y et al (2006) Stromal Hoxa5 function controls the growth and differentiation of mammary alveolar epithelium. Dev Dyn 235:1858–1871

    Article  CAS  PubMed  Google Scholar 

  7. Wellik DM (2011) Hox genes and kidney development. Pediatr Nephrol 26:1559–1565

    Article  PubMed  Google Scholar 

  8. Di-Poi N, Zakany J, Duboule D (2007) Distinct roles and regulations for HoxD genes in metanephric kidney development. PLoS Genet 3:e232

    Article  PubMed Central  PubMed  Google Scholar 

  9. Aubin J, Dery U, Lemieux M et al (2002) Stomach regional specification requires Hoxa5-driven mesenchymal-epithelial signaling. Development 129:4075–4087

    CAS  PubMed  Google Scholar 

  10. Zacchetti G, Duboule D, Zakany J (2007) Hox gene function in vertebrate gut morphogenesis: the case of the caecum. Development 134:3967–3973

    Article  CAS  PubMed  Google Scholar 

  11. Boucherat O, Montaron S, Berube-Simard FA, Aubin J, Philippidou P, Wellik DM, Dasen JS, Jeannotte L (2013) Partial functional redundancy between Hoxa5 and Hoxb5 paralog genes during lung morphogenesis. Am J Physiol Lung Cell Mol Physiol 304:L817–830

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  12. Mandeville I, Aubin J, LeBlanc M et al (2006) Impact of the loss of Hoxa5 function on lung alveogenesis. Am J Pathol 169:1312–1327

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  13. Zaffran S, Kelly RG (2012) New developments in the second heart field. Differentiation 84:17–24

    Article  CAS  PubMed  Google Scholar 

  14. Oury F, Murakami Y, Renaud JS et al (2006) Hoxa2- and rhombomere-dependent development of the mouse facial somatosensory map. Science 313:1408–1413

    Article  CAS  PubMed  Google Scholar 

  15. Geisen MJ, Di Meglio T, Pasqualetti M et al (2008) Hox Paralog Group 2 Genes Control the Migration of Mouse Pontine Neurons through Slit-Robo Signaling. PLoS Biol 6:e142

    Article  PubMed Central  PubMed  Google Scholar 

  16. Di Bonito M, Narita Y, Avallone B, Sequino L, Mancuso M, Andolfi G, Franze AM, Puelles L, Rijli FM, Studer M (2013) Assembly of the auditory circuitry by a Hox genetic network in the mouse brainstem. PLoS Genet 9:e1003249

    Article  PubMed Central  PubMed  Google Scholar 

  17. Di Meglio T, Kratochwil CF, Vilain N et al (2013) Ezh2 orchestrates topographic migration and connectivity of mouse precerebellar neurons. Science 339:204–207

    Article  PubMed  Google Scholar 

  18. Antonchuk J, Sauvageau G, Humphries RK (2002) HOXB4-induced expansion of adult hematopoietic stem cells ex vivo. Cell 109:39–45

    Article  CAS  PubMed  Google Scholar 

  19. Argiropoulos B, Humphries RK (2007) Hox genes in hematopoiesis and leukemogenesis. Oncogene 26:6766–6776

    Article  CAS  PubMed  Google Scholar 

  20. McGonigle GJ, Lappin TR, Thompson A (2008) Grappling with the HOX network in hematopoiesis and leukemia. Front Biosci 13:4297–4308

    Article  CAS  PubMed  Google Scholar 

  21. Cillo C (2007) Deregulation of the Hox Gene Network and Cancer. In: Papageorgiou S (ed) Hox gene expression. Springer, New York, pp 121–133

    Chapter  Google Scholar 

  22. Paul D, Bridoux L, Rezsohazy R, Donnay I (2011) HOX genes are expressed in bovine and mouse oocytes and early embryos. Mol Reprod Dev 78:436–449

    Article  CAS  PubMed  Google Scholar 

  23. Graba Y, Aragnol D, Pradel J (1997) Drosophila Hox complex downstream targets and the function of homeotic genes. Bioessays 19:379–388

    Article  CAS  PubMed  Google Scholar 

  24. Akin ZN, Nazarali AJ (2005) Hox genes and their candidate downstream targets in the developing central nervous system. Cell Mol Neurobiol 25:697–741

    Article  CAS  PubMed  Google Scholar 

  25. Chen H, Rubin E, Zhang H et al (2005) Identification of transcriptional targets of HOXA5. J Biol Chem 280:19373–19380

    Article  CAS  PubMed  Google Scholar 

  26. Lei H, Wang H, Juan AH, Ruddle FH (2005) The identification of Hoxc8 target genes. Proc Natl Acad Sci U S A 102:2420–2424

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  27. Svingen T, Tonissen KF (2006) Hox transcription factors and their elusive mammalian gene targets. Heredity 97:88–96

    Article  CAS  PubMed  Google Scholar 

  28. Makki N, Capecchi MR (2011) Identification of novel Hoxa1 downstream targets regulating hindbrain, neural crest and inner ear development. Dev Biol 357:295–304

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  29. Donaldson IJ, Amin S, Hensman JJ, Kutejova E, Rattray M, Lawrence N, Hayes A, Ward CM, Bobola N (2012) Genome-wide occupancy links Hoxa2 to Wnt-beta-catenin signaling in mouse embryonic development. Nucleic Acids Res 40:3990–4001

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  30. Merabet S, Pradel J, Graba Y (2005) Getting a molecular grasp on Hox contextual activity. Trends Genet 21:477–480

    Article  CAS  PubMed  Google Scholar 

  31. Merabet S, Sambrani N, Pradel J, Graba Y (2010) Regulation of Hox activity: insights from protein motifs. Adv Exp Med Biol 689:3–16

    Article  CAS  PubMed  Google Scholar 

  32. Rezsohazy R (2014) Non-transcriptional interactions of Hox proteins: inventory, facts, and future directions. Dev Dyn 243:117–131

    Article  CAS  PubMed  Google Scholar 

  33. Vidalain P, Boxem M, Ge H et al (2004) Increasing specificity in high-throughput yeast two-hybrid experiments. Methods 32:363–370

    Article  CAS  PubMed  Google Scholar 

  34. Dreze M, Monachello D, Lurin C et al (2010) High-quality binary interactome mapping. Methods Enzymol 470:281–315

    Article  CAS  PubMed  Google Scholar 

  35. Lemmens I, Lievens S, Tavernier J (2010) Strategies towards high-quality binary protein interactome maps. J Proteomics 73:1415–1420

    Article  CAS  PubMed  Google Scholar 

  36. Eyckerman S, Verhee A, der Heyden JV et al (2001) Design and application of a cytokine-receptor-based interaction trap. Nat Cell Biol 3:1114–1119

    Article  CAS  PubMed  Google Scholar 

  37. Kodama Y, Hu CD (2012) Bimolecular fluorescence complementation (BiFC): a 5-year update and future perspectives. Biotechniques 53:285–298

    Article  CAS  PubMed  Google Scholar 

  38. Hudry B, Viala S, Graba Y, Merabet S (2011) Visualization of protein interactions in living Drosophila embryos by the bimolecular fluorescence complementation assay. BMC Biol 9:5

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  39. Koh GC, Porras P, Aranda B et al (2012) Analyzing protein-protein interaction networks. J Proteome Res 11:2014–2031

    Article  CAS  PubMed  Google Scholar 

  40. Cusick ME, Klitgord N, Vidal M, Hill DE (2005) Interactome: gateway into systems biology. Hum Mol Genet 14(suppl_2):R171–181

    Article  CAS  PubMed  Google Scholar 

  41. Lambert B, Vandeputte J, Remacle S et al (2012) Protein interactions of the transcription factor Hoxa1. BMC Dev Biol 12:29

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  42. Bergiers I, Bridoux L, Nguyen N et al (2013) The Homeodomain Transcription Factor Hoxa2 Interacts with and Promotes the Proteasomal Degradation of the E3 Ubiquitin Protein Ligase RCHY1. PLoS One 8:e80387

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  43. Vidal M, Braun P, Chen E et al (1996) Genetic characterization of a mammalian protein-protein interaction domain by using a yeast reverse two-hybrid system. Proc Natl Acad Sci U S A 93:10321–10326

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  44. Vidal M, Brachmann RK, Fattaey A et al (1996) Reverse two-hybrid and one-hybrid systems to detect dissociation of protein-protein and DNA-protein interactions. Proc Natl Acad Sci U S A 93(19):10315–10320

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  45. James P, Halladay J, Craig EA (1996) Genomic libraries and a host strain designed for highly efficient two-hybrid selection in yeast. Genetics 144:1425–1436

    CAS  PubMed Central  PubMed  Google Scholar 

  46. Rual JF, Hirozane-Kishikawa T, Hao T et al (2004) Human ORFeome version 1.1: a platform for reverse proteomics. Genome Res 14:2128–2135

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  47. Wiemann S, Arlt D, Huber W et al (2004) From ORFeome to biology: a functional genomics pipeline. Genome Res 14:2136–2144

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  48. Rual J-F, Venkatesan K, Hao T et al (2005) Towards a proteome-scale map of the human protein–protein interaction network. Nature 437:1173–1178

    Article  CAS  PubMed  Google Scholar 

  49. Lamesch P, Li N, Milstein S et al (2007) hORFeome v3.1: a resource of human open reading frames representing over 10,000 human genes. Genomics 89:307–315

    Article  CAS  PubMed  Google Scholar 

  50. Simonis N, Rual JF, Lemmens I et al (2012) Host-pathogen interactome mapping for HTLV-1 and -2 retroviruses. Retrovirology 9:26

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  51. Orchard S (2012) Molecular interaction databases. Proteomics 12:1656–1662

    Article  CAS  PubMed  Google Scholar 

  52. del-Toro N, Dumousseau M, Orchard S et al (2013) A new reference implementation of the PSICQUIC web service. Nucleic Acids Res 41:W601–606

    Article  PubMed Central  PubMed  Google Scholar 

  53. Lambert B, Vandeputte J, Desmet PM et al (2010) Pentapeptide insertion mutagenesis of the Hoxa1 protein: mapping of transcription activation and DNA-binding regulatory domains. J Cell Biochem 110:484–496

    CAS  PubMed  Google Scholar 

  54. Van Roey K, Orchard S, Kerrien S et al (2013) Capturing cooperative interactions with the PSI-MI format. Database, bat066

    Google Scholar 

  55. Aranda B, Blankenburg H, Kerrien S et al (2011) PSICQUIC and PSISCORE: accessing and scoring molecular interactions. Nat Methods 8:528–529

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  56. van Iersel MP, Pico AR, Kelder T et al (2010) The BridgeDb framework: standardized access to gene, protein and metabolite identifier mapping services. BMC Bioinformatics 11:5

    Article  PubMed Central  PubMed  Google Scholar 

  57. Scardoni G, Petterlini M, Laudanna C (2009) Analyzing biological network parameters with CentiScaPe. Bioinformatics 25:2857–2859

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  58. Bader GD, Hogue CW (2003) An automated method for finding molecular complexes in large protein interaction networks. BMC Bioinformatics 4:2

    Article  PubMed Central  PubMed  Google Scholar 

Download references

Acknowledgements

We are grateful to the Belgian Foundation against Cancer and to the Télévie program coordinated by the Belgian National Fund for Scientific Research (FNRS) for their support. I.B. and B.L. held a FRIA fellowship from the FNRS. S.D. is a “Leon Fredericq” fellow. J.C.T. is Research Investigator of the FNRS.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to René Rezsohazy .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media New York

About this protocol

Cite this protocol

Bergiers, I., Lambert, B., Daakour, S., Twizere, JC., Rezsohazy, R. (2014). Hox Protein Interactions: Screening and Network Building. In: Graba, Y., Rezsohazy, R. (eds) Hox Genes. Methods in Molecular Biology, vol 1196. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-1242-1_20

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-1242-1_20

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-1241-4

  • Online ISBN: 978-1-4939-1242-1

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics