Skip to main content

Discovery and Classification of Homeobox Genes in Animal Genomes

  • Protocol
  • First Online:
Hox Genes

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1196))

Abstract

The diversification of homeobox genes is of great interest to evolutionary and developmental biology. To generate a catalogue of all homeobox genes within species of interest, it is necessary to sequence complete genomes. It is now possible for small research projects and individual laboratories to determine near-complete genome sequences of animal species. We provide bioinformatic methods for assembling draft genome sequences from any animal species, including read filtering and error correction, plus methods for extracting and classifying all homeobox sequences.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Duboule D, Dollé P (1989) The structural and functional organization of the murine HOX gene family resembles that of Drosophila homeotic genes. EMBO J 8:1497

    CAS  PubMed Central  PubMed  Google Scholar 

  2. Graham A, Papalopulu N, Krumlauf R (1989) The murine and Drosophila homeobox gene complexes have common features of organization and expression. Cell 57:367–378

    Article  CAS  PubMed  Google Scholar 

  3. de Rosa R, Grenier JK, Andreeva T et al (1999) Hox genes in brachiopods and priapulids and protostome evolution. Nature 399:772–776

    Article  CAS  PubMed  Google Scholar 

  4. Garcia-Fernández J, Holland PWH (1994) Archetypal organization of the amphioxus Hox gene cluster. Nature 370:563–566

    Article  PubMed  Google Scholar 

  5. Amores A, Force A, Yan YL et al (1998) Zebrafish hox clusters and vertebrate genome evolution. Science 282:1711–1714

    Article  CAS  PubMed  Google Scholar 

  6. Pendleton JW, Nagai BK, Murtha MT et al (1993) Expansion of the Hox gene family and the evolution of chordates. Proc Natl Acad Sci U S A 90:6300–6304

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  7. Zhong Y-F, Holland PWH (2011) HomeoDB2: functional expansion of a comparative homeobox gene database for evolutionary developmental biology. Evol Dev 13:567–568

    Article  PubMed Central  PubMed  Google Scholar 

  8. Bürglin TR (2011) Homeodomain subtypes and functional diversity. Subcell Biochem 52:95–122

    Article  PubMed  Google Scholar 

  9. Holland PWH, Booth HAF, Bruford EA (2007) Classification and nomenclature of all human homeobox genes. BMC Biol 5:47

    Article  PubMed Central  PubMed  Google Scholar 

  10. Liu Y, Schröder J, Schmidt B (2013) Musket: a multistage k-mer spectrum-based error corrector for Illumina sequence data. Bioinformatics 29(3):308–315

    Article  CAS  PubMed  Google Scholar 

  11. Zerbino DR, Birney E (2008) Velvet: algorithms for de novo short read assembly using de Bruijn graphs. Genome Res 18:821–829

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  12. Marçais G, Kingsford C (2011) A fast, lock-free approach for efficient parallel counting of occurrences of k-mers. Bioinformatics 27(6):764–770

    Article  PubMed Central  PubMed  Google Scholar 

  13. Camacho C, Coulouris G, Avagyan V et al (2009) BLAST+: architecture and applications. BMC Bioinformatics 10:421

    Article  PubMed Central  PubMed  Google Scholar 

  14. Katoh K, Standley DM (2013) MAFFT multiple sequence alignment software version 7: improvements in performance and usability. Mol Biol Evol 30:772–780

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  15. Stamatakis A (2006) RAxML-VI-HPC: maximum likelihood-based phylogenetic analyses with thousands of taxa and mixed models. Bioinformatics 22(21):2688–2690

    Article  CAS  PubMed  Google Scholar 

  16. Miller JR, Koren S, Sutton G (2010) Assembly algorithms for next-generation sequencing data. Genomics 95:315–327

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  17. Compeau PEC, Pevzner PA, Tesler G (2011) How to apply de Bruijn graphs to genome assembly. Nat Biotechnol 29:987–991

    Article  CAS  PubMed  Google Scholar 

  18. Li R, Zhu H, Ruan J et al (2010) De novo assembly of human genomes with massively parallel short read sequencing. Genome Res 20:265–272

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  19. Simpson JT, Wong K, Jackman SD et al (2009) ABySS: a parallel assembler for short read sequence data. Genome Res 19:1117–1123

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  20. Yandell M, Ence D (2012) A beginner’s guide to eukaryotic genome annotation. Nat Rev Genet 13:329–342

    Article  CAS  PubMed  Google Scholar 

  21. Stanke M, Keller O, Gunduz I et al (2006) AUGUSTUS: ab initio prediction of alternative transcripts. Nucleic Acids Res 34(Web Server issue):W435–W439

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  22. Capella-Gutiérrez S, Silla-Martínez JM, Gabaldón T (2009) trimAl: a tool for automated alignment trimming in large-scale phylogenetic analyses. Bioinformatics 25:1972–1973

    Article  PubMed Central  PubMed  Google Scholar 

  23. Castresana J (2000) Selection of conserved blocks from multiple alignments for their use in phylogenetic analysis. Mol Biol Evol 17(4):540–552

    Article  CAS  PubMed  Google Scholar 

  24. Guindon S, Gascuel O (2003) A simple, fast, and accurate algorithm to estimate large phylogenies by maximum likelihood. Syst Biol 52:696–704

    Article  PubMed  Google Scholar 

  25. Ronquist F, Teslenko M, van der Mark P et al (2012) MrBayes 3.2: efficient Bayesian phylogenetic inference and model choice across a large model space. Syst Biol 61:539–542

    Article  PubMed Central  PubMed  Google Scholar 

  26. Lartillot N, Lepage T, Blanquart S (2009) PhyloBayes 3: a Bayesian software package for phylogenetic reconstruction and molecular dating. Bioinformatics 25:2286–2288

    Article  CAS  PubMed  Google Scholar 

  27. Tamura K, Peterson D, Peterson N et al (2011) MEGA5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Mol Biol Evol 28:2731–2739

    Article  CAS  PubMed Central  PubMed  Google Scholar 

Download references

Acknowledgements

The authors’ research is funded by the European Research Council under the European Union’s Seventh Framework Programme (FP7/2007–2013)/ERC grant [268513]11.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Peter W. H. Holland .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media New York

About this protocol

Cite this protocol

Marlétaz, F., Paps, J., Maeso, I., Holland, P.W.H. (2014). Discovery and Classification of Homeobox Genes in Animal Genomes. In: Graba, Y., Rezsohazy, R. (eds) Hox Genes. Methods in Molecular Biology, vol 1196. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-1242-1_1

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-1242-1_1

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-1241-4

  • Online ISBN: 978-1-4939-1242-1

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics