Skip to main content

Analyzing the Protein Assembly and Dynamics of the Human Spliceosome with SILAC

  • Protocol
  • First Online:

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1188))

Abstract

Quantitative mass spectrometry has become an indispensable tool in proteomic studies. Numerous methods are available and can be applied to approach different issues. In most studies these issues include the quantitative comparison of different cell states, the identification of specific interaction partners or determining degrees of posttranslational modification. In this chapter we describe a SILAC-based quantification in order to analyze dynamic protein changes during the assembly of the human spliceosome on a pre-mRNA in vitro. We provide protocols for assembly of spliceosomes on pre-mRNA (including generation of pre-mRNAs and preparation of nuclear extracts), quantitative mass spectrometry (SILAC labeling, sample preparation), and data analysis to generate timelines for the dynamic protein assembly.

This is a preview of subscription content, log in via an institution.

Buying options

Protocol
USD   49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   139.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Springer Nature is developing a new tool to find and evaluate Protocols. Learn more

References

  1. Burge CB, Tuschl T, Sharp PA (1999) Splicing of precursors to mRNA by the Spliceosome. In: Gesteland RF, Cech TR, Atkins TR (eds) The RNA world, 2nd edn. Cold Spring Harbor Laboratory Press, Cold Spring Harbour, pp 525–560

    Google Scholar 

  2. Green MR (1991) Biochemical mechanisms of constitutive and regulated premRNA splicing. Annu Rev Cell Biol 7:559–599

    Article  CAS  PubMed  Google Scholar 

  3. Moore MJ, Query CC, Sharp PA (1993) Splicing of precursors to mRNA by the spliceosome. In: Gesteland RF, Atkins TR (eds) The RNA world, 1st edn. Cold Spring Harbor Laboratory Press, Cold Spring Harbour, pp 303–357

    Google Scholar 

  4. Moore MJ, Sharp PA (1993) Evidence for two active sites in the spliceosome provided by stereochemistry of pre-mRNA splicing. Nature 365:364–368

    Article  CAS  PubMed  Google Scholar 

  5. Nilsen TW (1998) RNA-RNA interactions in nuclear pre-mRNA splicing. In: Simmons RW, Grunerg-Manaro M (eds) RNA structure and function, 1st edn. Cold Spring Harbor Laboratory Press, Cold Spring Harbour, pp 1793–1809

    Google Scholar 

  6. Wahl MC, Will CL, Luhrmann R (2009) The spliceosome: design principles of a dynamic RNP machine. Cell 136:701–718

    Article  CAS  PubMed  Google Scholar 

  7. Raker VA, Hartmuth K, Kastner B et al (1999) Spliceosomal U snRNP core assembly: Sm proteins assemble onto an Sm site RNA nonanucleotide in a specific and thermodynamically stable manner. Mol Cell Biol 19:6554–6565

    CAS  PubMed Central  PubMed  Google Scholar 

  8. Raker VA, Plessel G, Luhrmann R (1996) The snRNP core assembly pathway: identification of stable core protein heteromeric complexes and an snRNP subcore particle in vitro. EMBO J 15:2256–2269

    CAS  PubMed Central  PubMed  Google Scholar 

  9. Urlaub H, Raker VA, Kostka S et al (2001) Sm protein-Sm site RNA interactions within the inner ring of the spliceosomal snRNP core structure. EMBO J 20:187–196

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  10. Achsel T, Brahms H, Kastner B et al (1999) A doughnut-shaped heteromer of human Sm-like proteins binds to the 3′-end of U6 snRNA, thereby facilitating U4/U6 duplex formation in vitro. EMBO J 18:5789–5802

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  11. Vidal VP, Verdone L, Mayes AE et al (1999) Characterization of U6 snRNA-protein interactions. RNA 5:1470–1481

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  12. Heinrichs V, Bach M, Winkelmann G et al (1990) U1-specific protein C needed for efficient complex formation of U1 snRNP with a 5′ splice site. Science 247:69–72

    Article  CAS  PubMed  Google Scholar 

  13. Pomeranz Krummel DA, Oubridge C, Leung AK et al (2009) Crystal structure of human spliceosomal U1 snRNP at 5.5 A resolution. Nature 458:475–480

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  14. Behrens SE, Tyc K, Kastner B et al (1993) Small nuclear ribonucleoprotein (RNP) U2 contains numerous additional proteins and has a bipartite RNP structure under splicing conditions. Mol Cell Biol 13:307–319

    CAS  PubMed Central  PubMed  Google Scholar 

  15. Brosi R, Groning K, Behrens SE et al (1993) Interaction of mammalian splicing factor SF3a with U2 snRNP and relation of its 60-kD subunit to yeast PRP9. Science 262:102–105

    Article  CAS  PubMed  Google Scholar 

  16. Will CL, Urlaub H, Achsel T et al (2002) Characterization of novel SF3b and 17S U2 snRNP proteins, including a human Prp5p homologue and an SF3b DEAD-box protein. EMBO J 21:4978–4988

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  17. Gozani O, Feld R, Reed R (1996) Evidence that sequence-independent binding of highly conserved U2 snRNP proteins upstream of the branch site is required for assembly of spliceosomal complex A. Genes Dev 10:233–243

    Article  CAS  PubMed  Google Scholar 

  18. Kramer A, Gruter P, Groning K et al (1999) Combined biochemical and electron microscopic analyses reveal the architecture of the mammalian U2 snRNP. J Cell Biol 145: 1355–1368

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  19. Bach M, Winkelmann G, Luhrmann R (1989) 20S small nuclear ribonucleoprotein U5 shows a surprisingly complex protein composition. Proc Natl Acad Sci U S A 86:6038–6042

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  20. Staley JP, Guthrie C (1998) Mechanical devices of the spliceosome: motors, clocks, springs, and things. Cell 92:315–326

    Article  CAS  PubMed  Google Scholar 

  21. Makarova OV, Makarov EM, Luhrmann R (2001) The 65 and 110 kDa SR-related proteins of the U4/U6.U5 tri-snRNP are essential for the assembly of mature spliceosomes. EMBO J 20:2553–2563

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  22. Ajuh P, Kuster B, Panov K et al (2000) Functional analysis of the human CDC5L complex and identification of its components by mass spectrometry. EMBO J 19:6569–6581

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  23. Makarova OV, Makarov EM, Urlaub H et al (2004) A subset of human 35S U5 proteins, including Prp19, function prior to catalytic step 1 of splicing. EMBO J 23:2381–2391

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  24. Umen JG, Guthrie C (1995) The second catalytic step of pre-mRNA splicing. RNA 1: 869–885

    CAS  PubMed Central  PubMed  Google Scholar 

  25. Will CL, Luhrmann R (2011) Spliceosome structure and function. Cold Spring Harb Perspect Biol 3: pii: a003707

    Google Scholar 

  26. Will CL, Rumpler S, Klein GJ et al (1996) In vitro reconstitution of mammalian U1 snRNPs active in splicing: the U1-C protein enhances the formation of early (E) spliceosomal complexes. Nucleic Acids Res 24:4614–4623

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  27. Behzadnia N, Golas MM, Hartmuth K et al (2007) Composition and three-dimensional EM structure of double affinity-purified, human prespliceosomal A complexes. EMBO J 26:1737–1748

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  28. Hartmuth K, Urlaub H, Vornlocher HP et al (2002) Protein composition of human prespliceosomes isolated by a tobramycin affinity-selection method. Proc Natl Acad Sci U S A 99:16719–16724

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  29. Deckert J, Hartmuth K, Boehringer D et al (2006) Protein composition and electron microscopy structure of affinity-purified human spliceosomal B complexes isolated under physiological conditions. Mol Cell Biol 26:5528–5543

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  30. Bessonov S, Anokhina M, Krasauskas A et al (2010) Characterization of purified human Bact spliceosomal complexes reveals compositional and morphological changes during spliceosome activation and first step catalysis. RNA 16:2384–2403

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  31. Makarov EM, Makarova OV, Urlaub H et al (2002) Small nuclear ribonucleoprotein remodeling during catalytic activation of the spliceosome. Science 298:2205–2208

    Article  CAS  PubMed  Google Scholar 

  32. Bessonov S, Anokhina M, Will CL et al (2008) Isolation of an active step I spliceosome and composition of its RNP core. Nature 452:846–850

    Article  CAS  PubMed  Google Scholar 

  33. Andersen JS, Lam YW, Leung AKL et al (2005) Nucleolar proteome dynamics. Nature 433:77–83

    Article  CAS  PubMed  Google Scholar 

  34. Talkington MW, Siuzdak G, Williamson JR (2005) An assembly landscape for the 30S ribosomal subunit. Nature 438:628–632

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  35. Agafonov DE, Deckert J, Wolf E et al (2011) Semiquantitative proteomic analysis of the human spliceosome via a novel two-dimensional gel electrophoresis method. Mol Cell Biol 31:2667–2682

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  36. Cox J, Mann M (2008) MaxQuant enables high peptide identification rates, individualized p.p.b.-range mass accuracies and proteome-wide protein quantification. Nat Biotechnol 26:1367–1372

    Article  CAS  PubMed  Google Scholar 

  37. Jurica MS, Licklider LJ, Gygi SR et al (2002) Purification and characterization of native spliceosomes suitable for three-dimensional structural analysis. RNA 8:426–439

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  38. Cox J, Matic I, Hilger M et al (2009) A practical guide to the MaxQuant computational platform for SILAC-based quantitative proteomics. Nat Protoc 4:698–705

    Article  CAS  PubMed  Google Scholar 

  39. Rigbolt KT, Vanselow JT, Blagoev B (2011) GProX, a user-friendly platform for bioinformatics analysis and visualization of quantitative proteomics data. Mol Cell Proteomics 10: 701–718

    Article  Google Scholar 

Download references

Acknowledgements

We thank Klaus Hartmuth for fruitful discussions and Uwe Plessmann and Johanna Lehne for excellent technical assistance.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Henning Urlaub .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media New York

About this protocol

Cite this protocol

Schmidt, C., Raabe, M., Lührmann, R., Urlaub, H. (2014). Analyzing the Protein Assembly and Dynamics of the Human Spliceosome with SILAC. In: Warscheid, B. (eds) Stable Isotope Labeling by Amino Acids in Cell Culture (SILAC). Methods in Molecular Biology, vol 1188. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-1142-4_16

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-1142-4_16

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-1141-7

  • Online ISBN: 978-1-4939-1142-4

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics