Skip to main content

Structure-Based Clustering of Major Histocompatibility Complex (MHC) Proteins for Broad-Based T-Cell Vaccine Design

  • Protocol
  • First Online:
Immunoinformatics

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1184))

  • 4260 Accesses

Abstract

Structure-based clustering technique is useful for identifying superfamilies of major histocompatibility complex (MHC) proteins with similar binding specificities. The resolved MHC superfamilies play an important role in vaccine development, from discovering new targets for broad-based vaccines and therapeutics to optimizing the affinity and selectivity of hits. Here, we describe a protocol and provide a summary for grouping MHC proteins according to their structural interaction characteristics.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Sidney J, Peters B, Frahm N, Brander C, Sette A (2008) HLA class I supertypes: a revised and updated classification. BMC Immunol 9:1

    Article  PubMed Central  PubMed  Google Scholar 

  2. Brusic V, Petrovsky N, Zhang G, Bajic B (2002) Prediction of promiscuous peptides that bind HLA class I molecules. Immunol Cell Biol 80:280–285

    Article  CAS  PubMed  Google Scholar 

  3. Doytchinova IA, Guan P, Flower DR (2004) Identifying human MHC supertypes using bioinformatic methods. J Immunol 172:4314–4323

    Article  CAS  PubMed  Google Scholar 

  4. Tong JC, Tan TW, Ranganathan S (2007) In silico grouping of peptide/HLA class I complexes using structural interaction characteristics. Bioinformatics 23:177–183

    Article  CAS  PubMed  Google Scholar 

  5. Lefranc M-P, Giudicelli V, Ginesoux C, Jabado-Michaloud J, Folch G, Bellahcene F et al (2009) IMGT®, the international ImMunoGeneTics information system®. Nucleic Acids Res 37:D1006–D1012

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  6. Vita R, Zarebski L, Greenbaum JA, Emami H, Hoof I, Salimi N et al (2010) The immune epitope database 2.0. Nucleic Acids Res 38:D854–D862

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  7. Berman HM, Westbrook J, Feng Z, Gilliland G, Bhat TN, Weissig H et al (2000) The Protein Data Bank. Nucleic Acids Res 28:D235–D242

    Article  Google Scholar 

  8. Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ (1990) Basic local alignment search tool. J Mol Biol 215:403–410

    Article  CAS  PubMed  Google Scholar 

  9. Sievers F, Wilm A, Dineen D, Gibson TJ, Karplus K, Li W et al (2011) Fast, scalable generation of high-quality protein multiple sequence alignments using Clustal Omega. Mol Syst Biol 7:539

    Article  PubMed Central  PubMed  Google Scholar 

  10. Sali A, Blundell TL (1993) Comparative protein modelling by satisfaction of spatial restraints. J Mol Biol 234:779–815

    Article  CAS  PubMed  Google Scholar 

  11. Wang Q, Canutescu AA, Dunbrack RL Jr (2008) SCWRL and MollDE: computer programs for side-chain conformation prediction and homology modeling. Nat Protoc 3:1832–1847

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  12. Gilat A (2004) MATLAB: an introduction with applications, 2nd edn. Wiley, Canada

    Google Scholar 

  13. McDonald IK, Thornton JM (1994) Satisfying hydrogen bonding potential in proteins. J Mol Biol 238:777–793

    Article  CAS  PubMed  Google Scholar 

  14. Laskowski RA (1995) SURFNET: a program for visualizing molecular surfaces, cavities, and intermolecular interactions. J Mol Biol 13(323–330):307–308

    Google Scholar 

  15. Laskowski RA, MacArthur MW, Moss DS, Thornton JM (1993) PROCHECK—a program to check the stereochemical quality of protein structures. J Appl Cryst 26:283–291

    Article  CAS  Google Scholar 

  16. Abagyan RA, Totrov MM, Kuznetsov DA (1994) ICM: a new method for protein modeling and design: applications to docking and structure prediction from the distorted native conformation. J Comput Chem 15:488–506

    Article  CAS  Google Scholar 

  17. Rost B (1999) Twilight zone of protein sequence alignments. Protein Eng 12:85–94

    Article  CAS  PubMed  Google Scholar 

  18. Jones S, Thornton JM (1996) Principles of protein-protein interactions. Proc Natl Acad Sci U S A 93:13–20

    Article  CAS  PubMed Central  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Joo Chuan Tong .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media New York

About this protocol

Cite this protocol

Tong, J.C., Tan, T.W., Ranganathan, S. (2014). Structure-Based Clustering of Major Histocompatibility Complex (MHC) Proteins for Broad-Based T-Cell Vaccine Design. In: De, R., Tomar, N. (eds) Immunoinformatics. Methods in Molecular Biology, vol 1184. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-1115-8_27

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-1115-8_27

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-1114-1

  • Online ISBN: 978-1-4939-1115-8

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics