Skip to main content

V.A.3. Chromodissection in Vitreoretinal Surgery

  • Chapter
  • First Online:
Vitreous

Abstract

The term chromodissection refers to the use of staining substances at the vitreoretinal interface during ophthalmic surgery to improve visualization of otherwise transparent and barely detectable structures, predominantly the internal limiting membrane (ILM) of the retina [1]. Today, several dyes such as indocyanine green (ICG), brilliant blue (BB), or trypan blue (TB) are in use to selectively stain the ILM and premacular membranes. Beyond a better visualization of the target structure, little is known about other effects as a result of the interaction between the dye and the stained tissue. There is some evidence that ILM dyes interfere with the mechanical properties of the ILM in a variable fashion, and toxic effects, especially for ICG, have been reported leading to less favorable functional results of the surgical procedure. While the search for alternative dyes is ongoing, it is important to use these adjuncts with care and take into account the different modes of application, exposure times, and concentrations in the absence of a standardized protocol.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Haritoglou C, Sebag J. Indications and considerations for chromodissection. Retinal Physician. 2014;11(5):34–9.

    Google Scholar 

  2. Haritoglou C, Freyer W, Priglinger SG, Kampik A. Light absorbing properties of indocyanine green (ICG) in solution and after adsorption to the retinal surface: an ex-vivo approach. Graefes Arch Clin Exp Ophthalmol. 2006;244:1196–202.

    Article  PubMed  CAS  Google Scholar 

  3. Fineman MS, Maguire JI, Fineman SW, Benson WE. Safety of indocyanine green angiography during pregnancy: a survey of the retina, macula, and vitreous societies. Arch Ophthalmol. 2001;119:353–5.

    Article  PubMed  CAS  Google Scholar 

  4. Xiao Y, Wang YH, Fu ZY, Hong H. Staining the anterior capsule with indocyanine green or trypan blue for capsulorrhexis in eyes with white cataract. Int Ophthalmol. 2004;25:273–6.

    Article  PubMed  Google Scholar 

  5. Kadonosono K, Itoh N, Uchio E, Nakamura S, Ohno S. Staining of the internal limiting membrane in macular hole surgery. Arch Ophthalmol. 2000;118:1116–8.

    Article  PubMed  CAS  Google Scholar 

  6. Gandorfer A, Messmer EM, Ulbig MW, Kampik A. Indocyanine green selectively stains the internal limiting membrane. Am J Ophthalmol. 2001;131:387–8.

    Article  PubMed  CAS  Google Scholar 

  7. Da Mata AP, Burk SE, Foster RE, Riemann CD, Petersen MR, Nehemy MB, Augsburger JJ. Long-term follow-up of indocyanine green-assisted peeling of the retinal internal limiting membrane during vitrectomy surgery for idiopathic macular hole repair. Ophthalmology. 2004;111:2246–53.

    Article  PubMed  Google Scholar 

  8. Hillenkamp J, Saikia P, Gora F, Sachs HG, Lohmann CP, Roider J, Baumler W, Gabel VP. Macular function and morphology after peeling of idiopathic epiretinal membrane with and without the assistance of indocyanine green. Br J Ophthalmol. 2005;89:437–43.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  9. Husson-Danan A, Glacet-Bernard G, Soubrane G, Coscas G. Clinical evaluation of the use of indocyanine green for peeling the internal limiting membrane in macular hole surgery. Graefes Arch Clin Exp Ophthalmol. 2006;244:291–7.

    Article  PubMed  CAS  Google Scholar 

  10. Horobin RW, Kiernan JA, editors. Conn´s biological stains. 10th ed. Oxford: Published for the Biological Stain Commission by BIOS Scientific Publishers; 2002.

    Google Scholar 

  11. Sanchez R, Risopatron J, Sepulveda G, Pena P, Miska W. Evaluation of the acrosomal membrane in bovine spermatozoa – effects of proteinase inhibitors. Theriogenology. 2005;43:761–8.

    Article  Google Scholar 

  12. Osaka K, Tyurina YY, Dubey PK, Tyurin VA, Ritov VB, Quinn PJ, Branch RA, Kagan VE. Amphotericin B as an intracellular antioxidant. Protection against 2,2-azobis (2,4-dimethylvaleronitrile) induced peroxidation of membrane phospholipids in rat aortic smooth muscle cells. Biochem Pharmacol. 1997;54:937–45.

    Article  PubMed  CAS  Google Scholar 

  13. Callebaut M, Vakaet L. Fluorescent yolk marking of the primary gonocytes in quail blastoderms by administration of trypan blue during late oogenesis. ICRS Med Sci Biochem. 1981;9:458.

    CAS  Google Scholar 

  14. Baskaya MK, Rao AM, Dogan A, Donaldson D, Dempsey RJ. The biphasic opening of the blood-brain barrier in the cortex and hippocampus after traumatic brain injury in rats. Neurosci Lett. 1997;226:33–6.

    Article  PubMed  CAS  Google Scholar 

  15. Berman RS, Martin W. Arterial endothelial barrier dysfunction: actions of homocysteine and the hypoxanthine-xanthine oxidase free radical generating system. Br J Pharmacol. 1993;108:920–6.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  16. Huser M, Stegemann E, Kammermeier H. Is enzyme release a sign of irreversible injury of cardiomyocytes? Life Sci. 1996;58:545–50.

    Article  PubMed  CAS  Google Scholar 

  17. Kozlowska H, Drewa G, Grzanka A. Effect of trypan blue on the activity of lysosomal enzymes, tumor growth and cell ultrastructure in B16 melanotic melanoma in mice. Neoplasma. 1995;42:173–8.

    PubMed  CAS  Google Scholar 

  18. Yetik H, Devranoglou K, Ozkan S. Determining the lowest trypan blue concentration that satisfactorily stains the anterior capsule. J Cataract Refract Surg. 2002;28:988–91.

    Article  PubMed  Google Scholar 

  19. Georgiadis N, Kardasopoulos A, Bufidis T. The evaluation of corneal graft tissue by the use of trypan blue. Ophthalmologica. 1999;213:8–11.

    Article  PubMed  CAS  Google Scholar 

  20. Jacob S, Agarwal A, Agarwal S, Chowdhary S, Chowdhary R, Bagmar AA. Trypan blue as an adjunct for safe Phacoemulsification in eyes with white cataract. J Cataract Refract Surg. 2002;28:1819–25.

    Article  PubMed  Google Scholar 

  21. Melles GR, de Waard PW, Pameijer JH, Beekhuis WH. Staining the lens capsule with trypan blue for visualizing capsulorhexis in surgery of mature cataracts. Klin Monatsbl Augenheilkd. 1999;215:342–4.

    Article  PubMed  CAS  Google Scholar 

  22. Perrier M, Sebag M. Trypan blue-assisted peeling of the internal limiting membrane during macular hole surgery. Am J Ophthalmol. 2003;135:903–5.

    Article  PubMed  Google Scholar 

  23. Ueno A, Hisatomi T, Enaida H, Kagimoto T, Mochizuki Y, Goto Y, Kubota T, Hata Y, Ishibashi T. Biocompatibility of brilliant blue G in a rat model of subretinal injection. Retina. 2007;27:499–504.

    Article  PubMed  Google Scholar 

  24. Enaida H, Hisatomi T, Hata Y, Ueno A, Goto Y, Yamada T, Kubota T, Ishibashi T. Brilliant blue G selectively stains the internal limiting membrane/brilliant blue G-assisted membrane peeling. Retina. 2006;26:631–6.

    Article  PubMed  Google Scholar 

  25. Enaida H, Hisatomi T, Goto Y, Hata Y, Ueno A, Miura M, Kubota T, Ishibashi T. Preclinical investigation of internal limiting membrane staining and peeling using intravitreal brilliant blue G. Retina. 2006;26:623–30.

    Article  PubMed  Google Scholar 

  26. Lüke M, Januschowski K, Beutel J, Lüke C, Grisanti S, Peters S, Jaissle GB, Bartz-Schmidt KU, Szurman P. Electrophysiological effects of Brilliant Blue G in the model of the isolated perfused vertebrate retina. Graefes Arch Clin Exp Ophthalmol. 2008;246(6):817–22.

    Article  PubMed  Google Scholar 

  27. Remy M, Thaler S, Schumann RG, May CA, Fiedorowicz M, Schüttauf F, Grüterich M, Priglinger SG, Nentwich M, Kampik A, Haritoglou C. An in-vivo evaluation of Brilliant Blue G in animals and humans. Br J Ophthalmol. 2008;92:1142–7.

    Article  PubMed  CAS  Google Scholar 

  28. Kawahara S, Hata Y, Miura M, Kita T, Sengoku A, Nakao S, Mochizuki Y, Enaida H, Ueno A, Hafezi-Moghadam A, Ishibashi T. Intracellular events in retinal glial cells exposed to ICG and BBG. Invest Ophthalmol Vis Sci. 2007;48:4426–32.

    Article  PubMed  Google Scholar 

  29. Haritoglou C, Priglinger SG, Eibl K, Liegl R, May CA, Thaler S, Kampik A, Schuettauf F. Experimental evaluation of aniline and methyl blue for intraocular surgery. Retina. 2009;29:166–73.

    Google Scholar 

  30. Haritoglou C, Schumann RG, Kampik A, Gandorfer A. Heavy brilliant blue G for internal limiting membrane staining. Retina. 2011;31(2):405–7.

    Article  PubMed  Google Scholar 

  31. Henrich PB, Valmaggia C, Lang C, Priglinger SG, Haritoglou C, Strauss RW, Cattin PC. Contrast recognizability during brilliant blue G – and heavier-than-water brilliant blue G-assisted chromovitrectomy: a quantitative analysis. Acta Ophthalmol. 2013;91(2):e120–4.

    Article  PubMed  Google Scholar 

  32. Henrich PB, Priglinger SG, Haritoglou C, Josifova T, Ferreira PR, Strauss RW, Flammer J, Cattin PC. Quantification of contrast recognizability during brilliant blue G (BBG) and indocyanine green (ICG) assisted chromovitrectomy. Invest Ophthalmol Vis Sci. 2011;52(7):4345–9.

    Article  PubMed  Google Scholar 

  33. Jackson TL, Griffin L, Vote B, Hillenkamp J, Marshall J. An experimental method for testing novel retinal vital stains. Exp Eye Res. 2005;81(4):446–54.

    Article  PubMed  CAS  Google Scholar 

  34. Rodrigues EB, Penha FM, de Paula Fiod Costa E, Maia M, Dib E, Moraes Jr M, Meyer CH, Magalhaes Jr O, Melo GB, Stefano V, Dias AB, Farah ME. Ability of new vital dyes to stain intraocular membranes and tissues in ocular surgery. Am J Ophthalmol. 2010;149(2):265–77.

    Article  PubMed  CAS  Google Scholar 

  35. Haritoglou C, Strauss R, Priglinger SG, Kreutzer T, Kampik A. Delineation of the vitreous and posterior hyaloid using bromophenol blue. Retina. 2008;28:333–40.

    Article  PubMed  Google Scholar 

  36. Tsuiki E, Fujikawa A, Miyamura N, Yamada K, Mishima K, Kitaoka T. Visual field defects after macular hole surgery with indocyanine green-assisted internal limiting membrane peeling. Am J Ophthalmol. 2007;143(4):704–5.

    Article  PubMed  Google Scholar 

  37. Haritoglou C, Gandorfer A, Gass CA, Schaumberger M, Ulbig MW, Kampik A. Indocyanine green-assisted peeling of the internal limiting membrane in macular hole surgery affects visual outcome: a clinicopathologic correlation. Am J Ophthalmol. 2002;134(6):836–41.

    Article  PubMed  Google Scholar 

  38. Rodrigues EB, Meyer CH. Meta-analysis of chromovitrectomy with indocyanine green in macular hole surgery. Ophthalmologica. 2008;222(2):123–9.

    Article  PubMed  Google Scholar 

  39. Yam HF, Kwok AKH, Chan KP, Lai TYY, Chu KY, Lam DSC, Pang CP. Effect of indocyanine green and illumination on gene expression in human retinal pigment epithelial cells. Invest Ophthalmol Vis Sci. 2003;44:370–7.

    Article  PubMed  Google Scholar 

  40. Langhals H, Haritoglou C. Chemical and spectroscopic aspects of the application of dyes in vitreoretinal surgery. Ophthalmologe. 2009;106(1):16–20.

    Article  PubMed  CAS  Google Scholar 

  41. Yip HK, Lai TY, So KF, Kwok AK. Retinal ganglion cells toxicity caused by photosensitising effects of intravitreal indocyanine green with illumination in rat eyes. Br J Ophthalmol. 2006;90:99–102.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  42. Sato T, Ito M, Ishida M, Karasawa Y. Phototoxicity of indocyanine green under continuous fluorescent lamp illumination and its prevention by blocking red light on cultured Müller cells. Invest Ophthalmol Vis Sci. 2010;51(8):4337–45.

    Article  PubMed  Google Scholar 

  43. Langhals H, Varja A, Laubichler P, Kernt M, Eibl K, Haritoglou C. Cyanine dyes as optical contrast agents for ophthalmological surgery. J Med Chem. 2011;54(11):3903–25.

    Article  PubMed  CAS  Google Scholar 

  44. Sebag J, Gupta P, Rosen R, Garcia P, Sadun AA. Macular holes and macular pucker: The role of vitreoschisis as imaged by optical coherence tomography/scanning laser ophthalmoscopy. Trans Am Ophthalmol Soc. 2007;105:121–31.

    PubMed  PubMed Central  Google Scholar 

  45. Gupta P, Yee KMP, Garcia P, Rosen RB, Parikh J, Hageman GS, Sadun AA, Sebag J. Vitreoschisis in macular diseases. Br J Ophthalmol. 2011;95(3):376–80.

    Google Scholar 

  46. Kampik A, Green WR, Michels RG, et al. Ultrastructural features of progressive idiopathic epiretinal membrane removed by vitreous surgery. Am J Ophthalmol. 1980;90:797–809.

    Article  PubMed  CAS  Google Scholar 

  47. Kwok AK, Lai TY, Yuen KS. Epiretinal membrane surgery with or without internal limiting membrane peeling. Clin Exp Ophthalmol. 2005;33:379–85.

    Article  Google Scholar 

  48. Maguire AM, Smiddy WE, Nanda SK, et al. Clinicopathologic correlation of recurrent epiretinal membranes after previous surgical removal. Retina. 1990;10:213–22.

    Article  PubMed  CAS  Google Scholar 

  49. Shimada H, Nakashizuka H, Hattori T, et al. Double staining with brilliant blue G and double peeling for epiretinal membranes. Ophthalmology. 2009;116:1370–6.

    Article  PubMed  Google Scholar 

  50. Schumann RG, Gandorfer A, Eibl KH, Henrich PB, Kampik A, Haritoglou C. Sequential epiretinal membrane removal with internal limiting membrane peeling in brilliant blue G-assisted macular surgery. Br J Ophthalmol. 2010;94(10):1369–72.

    Article  PubMed  Google Scholar 

  51. Stalmans P, Freon EJ, Parys-Van Ginderdeuren R, et al. Double vital staining using trypan blue and infracyanine green in macular pucker surgery. Br J Ophthalmol. 2003;87:713–6.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  52. Streeten BA. Disorders of the vitreous. In: Garner A, Klintworth GK, editors. Pathophysiology of ocular disease – a dynamic approach, part B. New York: Marcel Dekker; 1982. p. 1381–419.

    Google Scholar 

  53. Halfter W, Dong S, Dong A, Eller AW, Nischt R. Origin and turnover of ECM proteins from the inner limiting membrane and vitreous body. Eye. 2008;22(10):1207–13.

    Article  PubMed  CAS  Google Scholar 

  54. Candiello J, Balasubramani M, Schreiber EM, Cole GJ, Mayer U, Halfter W, Lin H. Biomechanical properties of native basement membranes. FEBS J. 2007;274(11):2897–908.

    Article  PubMed  CAS  Google Scholar 

  55. Halfter W, Candiello J, Hu H, Zhang P, Schreiber E, Balasubramani M. Protein composition and biomechanical properties of in vivo-derived basement membranes. Cell Adh Migr. 2013;7(1):64–71.

    Article  PubMed  PubMed Central  Google Scholar 

  56. Henrich PB, Monnier CA, Halfter W, Haritoglou C, Strauss RW, Lim RY, Loparic M. Nanoscale topographic and biomechanical studies of the human internal limiting membrane. Invest Ophthalmol Vis Sci. 2012;53(6):2561–70.

    Article  PubMed  Google Scholar 

  57. Haritoglou C, Mauell S, Benoit M, Schumann RG, Henrich PB, Wolf A, Kampik A. Vital dyes increase the rigidity of the internal limiting membrane. Eye (Lond). 2013;27(11):1308–15. doi:10.1038/eye.2013.178.

  58. Hillenkamp J, Dydykina S, Klettner A, Treumer F, Vasold R, Bäumler W, Roider J. Safety testing of indocyanine green with different surgical light sources and the protective effect of optical filters. Retina. 2010;30(10):1685–91.

    Article  PubMed  Google Scholar 

  59. Wollensak G. Biomechanical changes of the internal limiting membrane after indocyanine green staining. Dev Ophthalmol. 2008;42:82–90.

    Article  PubMed  CAS  Google Scholar 

  60. Wollensak G, Spoerl E, Wirbelauer C, Pham DT. Influence of indocyanine green staining on the biomechanical strength of porcine internal limiting membrane. Ophthalmologica. 2004;218(4):278–82.

    Article  PubMed  Google Scholar 

  61. Foote CS. Definition of type I and type II photosensitized oxidation. Photochem Photobiol. 1991;54:659.

    Article  PubMed  CAS  Google Scholar 

  62. Engel E, Schraml R, Maisch T, Kobuch K, König B, Szeimies RM, Hillenkamp J, Bäumler W, Vasold R. Light-induced decomposition of indocyanine green. Invest Ophthalmol Vis Sci. 2008;49(5):1777–83.

    Article  PubMed  Google Scholar 

  63. Gandorfer A, Haritoglou C, Gandorfer A, Kampik A. Retinal damage from indocyanine green in experimental macular surgery. Invest Ophthalmol Vis Sci. 2003;44:316–23.

    Article  PubMed  Google Scholar 

  64. Eckardt C, Eckardt U, Groos S, Luciano L, Reale E. Removal of the internal limiting membrane in macular holes. Clinical and morphological findings. Ophthalmologe. 1997;94(8):545–51.

    Article  PubMed  CAS  Google Scholar 

  65. Haritoglou C, Gandorfer A, Gass CA, Schaumberger M, Ulbig MW, Kampik A. The effect of indocyanine-green on functional outcome of macular pucker surgery. Am J Ophthalmol. 2003;135:328–37.

    Article  PubMed  CAS  Google Scholar 

  66. Kenawy N, Wong D, Stappler T, Romano MR, Das RA, Hebbar G, Prime W, Heimann H, Gibran SK, Sheridan CM, Cheung YH, Hiscott PS. Does the presence of an epiretinal membrane alter the cleavage plane during internal limiting membrane peeling? Ophthalmology. 2010;117(2):320–3.

    Article  PubMed  Google Scholar 

  67. Gandorfer A, Schumann R, Scheler R, Haritoglou C, Kampik A. Pores of the inner limiting membrane in flat-mounted surgical specimens. Retina. 2011;31(5):977–81.

    Article  PubMed  Google Scholar 

  68. Sebag J. Pharmacologic vitreolysis. Retina. 1998;18:1–3.

    Article  PubMed  CAS  Google Scholar 

  69. Sebag J. Is pharmacologic vitreolysis brewing? Retina. 2002;22:1–3.

    Article  PubMed  CAS  Google Scholar 

  70. Sebag J. Pharmacologic vitreolysis – premise and promise of the first decade. Retina. 2009;29:871–4.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christos Haritoglou MD .

Editor information

Editors and Affiliations

Electronic Supplementary Material

Below is the link to the electronic supplementary material.

Video V.A.3-1

(MP4 9165 kb)

Video V.A.3-2

(MP4 9625 kb)

Video V.A.3-3

(MP4 8204 kb)

Video V.A.3-4

(MP4 7464 kb)

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media New York

About this chapter

Cite this chapter

Haritoglou, C., Gandorfer, A., Kampik, A. (2014). V.A.3. Chromodissection in Vitreoretinal Surgery. In: Sebag, J. (eds) Vitreous. Springer, New York, NY. https://doi.org/10.1007/978-1-4939-1086-1_34

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-1086-1_34

  • Published:

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4939-1085-4

  • Online ISBN: 978-1-4939-1086-1

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics