Skip to main content

The Fetal Cerebral Circulation: Three Decades of Exploration by the LLU Center for Perinatal Biology

  • Conference paper
  • First Online:
Advances in Fetal and Neonatal Physiology

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 814))

Abstract

For more than three decades, research programs in the Center of Perinatal Biology have focused on the vascular biology of the fetal cerebral circulation. In the 1980s, research in the Center demonstrated that cerebral autoregulation operated over a narrower pressure range, and was more vulnerable to insults, in fetuses than in adults. Other studies were among the first to establish that compared to adult cerebral arteries, fetal cerebral arteries were more hydrated, contained smaller smooth muscle cells and less connective tissue, and had endothelium less capable of producing NO. Work in the 1990s revealed that pregnancy depressed reactivity to NO in extra-cerebral arteries, but elevated it in cerebral arteries through effects involving changes in cGMP metabolism. Comparative studies verified that fetal lamb cerebral arteries were an excellent model for cerebral arteries from human infants. Biochemical studies demonstrated that cGMP metabolism was dramatically upregulated, but that contraction was far more dependent on calcium influx, in fetal compared to adult cerebral arteries. Further studies established that chronic hypoxia accelerates functional maturation of fetal cerebral arteries, as indicated by increased contractile responses to adrenergic agonists and perivascular adrenergic nerves. In the 2000s, studies of signal transduction established age-dependent roles for PKG, PKC, PKA, ERK, ODC, IP3, myofilament calcium sensitivity, and many other mechanisms. These diverse studies clearly demonstrated that fetal cerebral arteries were functionally quite distinct compared to adult cerebral arteries. In the current decade, research in the Center has expanded to a more molecular focus on epigenetic mechanisms and their role in fetal vascular adaptation to chronic hypoxia, maternal drug abuse, and nutrient deprivation. Overall, the past three decades have transformed thinking about, and understanding of, the fetal cerebral circulation due in no small part to the sustained research efforts by faculty and staff in the Center for Perinatal Biology.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Rudolph AM, Heymann MA. The fetal circulation. Annu Rev Med. 1968;19:195–206.

    Article  CAS  PubMed  Google Scholar 

  2. Towbin A. Central nervous system damage in the human fetus and newborn infant. Mechanical and hypoxic injury incurred in the fetal-neonatal period. Am J Dis Child. 1970;119:529–42.

    Article  CAS  PubMed  Google Scholar 

  3. Volpe JJ. Intracranial hemorrhage in the newborn: current understanding and dilemmas. Neurology. 1979;29:632–5.

    Article  CAS  PubMed  Google Scholar 

  4. Santoli FM, Pensa PM, Azzolina G. Anesthesia in open-heart surgery for correction of congenital heart diseases in children over one year of age. Int Anesthesiol Clin. 1976;14:165–204.

    Article  CAS  PubMed  Google Scholar 

  5. Zamenhof S, van Marthens E, Grauel L. DNA (cell number) in neonatal brain: second generation (F2) alteration by maternal (F0) dietary protein restriction. Science. 1971;172:850–1.

    Article  CAS  PubMed  Google Scholar 

  6. Nuwayhid B, Brinkman 3rd CR, Su C, Bevan JA, Assali IN. Systemic and pulmonary hemodynamic responses to adrenergic and cholinergic agonists during fetal development. Biol Neonate. 1975;26:301–17.

    Article  CAS  PubMed  Google Scholar 

  7. Nuwayhid B, Brinkman 3rd CR, Su C, Bevan JA, Assali NS. Development of autonomic control of fetal circulation. Am J Physiol. 1975;228:337–44.

    CAS  PubMed  Google Scholar 

  8. Su C, Bevan JA, Assali NS, Brinkman 3rd CR. Development of neuroeffector mechanisms in the carotid artery of the fetal lamb. Blood Vessels. 1977;14:12–24.

    CAS  PubMed  Google Scholar 

  9. Su C, Bevan JA, Assali NS, Brinkman 3rd CR. Regional variation of lamb blood vessel responsiveness to vasoactive agents during fetal development. Circ Res. 1977;41:844–8.

    Article  CAS  PubMed  Google Scholar 

  10. Volpe JJ. Neonatal intraventricular hemorrhage. N Engl J Med. 1981;304:886–91.

    Article  CAS  PubMed  Google Scholar 

  11. Tarby TJ, Volpe JJ. Intraventricular hemorrhage in the premature infant. Pediatr Clin North Am. 1982;29:1077–104.

    CAS  PubMed  Google Scholar 

  12. Fenichel GM. Hypoxic-ischemic encephalopathy in the newborn. Arch Neurol. 1983;40:261–6.

    Article  CAS  PubMed  Google Scholar 

  13. Golden GS. Stroke syndromes in childhood. Neurol Clin. 1985;3:59–75.

    CAS  PubMed  Google Scholar 

  14. Hill A, Volpe JJ. Pathogenesis and management of hypoxic-ischemic encephalopathy in the term newborn. Neurol Clin. 1985;3:31–46.

    CAS  PubMed  Google Scholar 

  15. Goddard-Finegold J. Periventricular, intraventricular hemorrhages in the premature newborn. Update on pathologic features, pathogenesis, and possible means of prevention. Arch Neurol. 1984;41:766–71.

    Article  CAS  PubMed  Google Scholar 

  16. Vannucci RC, Hernandez MJ. Perinatal cerebral blood flow. Mead Johnson Symp Perinat Dev Med. 1980;17:17–29.

    PubMed  Google Scholar 

  17. Tweed WA, Pash M, Doig G. Cerebrovascular mechanisms in perinatal asphyxia: the role of vasogenic brain edema. Pediatr Res. 1981;15:44–6.

    Article  CAS  PubMed  Google Scholar 

  18. Tweed WA, Cote J, Wade JG, Gregory G, Mills A. Preservation of fetal brain blood flow relative to other organs during hypovolemic hypotension. Pediatr Res. 1982;16:137–40.

    Article  CAS  PubMed  Google Scholar 

  19. Jones Jr MD, Traystman RJ. Cerebral oxygenation of the fetus, newborn, and adult. Semin Perinatol. 1984;8:205–16.

    PubMed  Google Scholar 

  20. Papile LA, Rudolph AM, Heymann MA. Autoregulation of cerebral blood flow in the preterm fetal lamb. Pediatr Res. 1985;19:159–61.

    Article  CAS  PubMed  Google Scholar 

  21. Tweed WA, Cote J, Pash M, Lou H. Arterial oxygenation determines autoregulation of cerebral blood flow in the fetal lamb. Pediatric Research 1983; 17: 246–249.

    Google Scholar 

  22. Ashwal S, Majcher JS, Vain N, Longo LD. Patterns of fetal lamb regional cerebral blood flow during and after prolonged hypoxia. Pediatr Res. 1980;14:1104–10.

    Article  CAS  PubMed  Google Scholar 

  23. Ashwal S, Majcher JS, Longo LD. Patterns of fetal lamb regional cerebral blood flow during and after prolonged hypoxia: studies during the posthypoxic recovery period. Am J Obstet Gynecol. 1981;139:365–72.

    CAS  PubMed  Google Scholar 

  24. Ashwal S, Dale PS, Longo LD. Regional cerebral blood flow: studies in the fetal lamb during hypoxia, hypercapnia, acidosis, and hypotension. Pediatr Res. 1984;18:1309–16.

    Article  CAS  PubMed  Google Scholar 

  25. Ashwal S, Staddon T, Geller M, Longo LD. Brainstem auditory evoked responses in the newborn lamb. Studies during postnatal development and acute hypoxia. Biol Neonate. 1984;45:58–68.

    Article  CAS  PubMed  Google Scholar 

  26. Mogilner M, Ashwal S, Dale PS, Longo LD. Effect of nimodipine on newborn lamb cerebral blood flow. Biol Neonate. 1988;53:279–89.

    Article  CAS  PubMed  Google Scholar 

  27. Busija DW, Leffler CW, Wagerle LC. Responses of newborn pig pial arteries to sympathetic nervous stimulation and exogenous norepinephrine. Pediatr Res. 1985;19:1210–4.

    Article  CAS  PubMed  Google Scholar 

  28. Leffler CW, Busija DW. Prostanoids in cortical subarachnoid cerebrospinal fluid and pial arterial diameter in newborn pigs. Circ Res. 1985;57:689–94.

    Article  CAS  PubMed  Google Scholar 

  29. Leffler CW, Busija DW, Fletcher AM, Beasley DG, Hessler JR, Green RS. Effects of indomethacin upon cerebral hemodynamics of newborn pigs. Pediatr Res. 1985;19:1160–4.

    Article  CAS  PubMed  Google Scholar 

  30. Busija DW, Leffler CW, Beasley DG. Effects of leukotrienes C4, D4, and E4 on cerebral arteries of newborn pigs. Pediatr Res. 1986;20:973–6.

    Article  CAS  PubMed  Google Scholar 

  31. Nielsen KC, Owman C. Contractile response and amine receptor mechanisms in isolated middle cerebral artery of the cat. Brain Res. 1971;27:33–42.

    Article  CAS  PubMed  Google Scholar 

  32. Toda N. Proceedings: influence of 5-hydroxy-kynurenamine, a new serotonin metabolite, on isolated cerebral arteries. Jpn J Pharmacol. 1974;24:s68.

    Google Scholar 

  33. Edvinsson L, Nielsen KC, Owman C. Influence of initial tension and changes in sensitivity during amine-induced contractions of pial arteries in vitro. Arch Int Pharmacodyn Ther. 1974;208:235–42.

    CAS  PubMed  Google Scholar 

  34. Hayashi S, Park MK, Kuehl TJ. Relaxant and contractile responses to prostaglandins in premature, newborn and adult baboon cerebral arteries. J Pharmacol Exp Ther. 1985;233:628–35.

    CAS  PubMed  Google Scholar 

  35. Pearce WJ, Ashwal S. Developmental changes in thickness, contractility, and hypoxic sensitivity of newborn lamb cerebral arteries. Pediatr Res. 1987;22:192–6.

    Article  CAS  PubMed  Google Scholar 

  36. Hull AD, Long DM, Longo LD, Pearce WJ. Pregnancy-induced changes in ovine cerebrovascular reactivity and composition. Proc West Pharmacol Soc. 1991;34:239–45.

    CAS  PubMed  Google Scholar 

  37. Hull A, Long D, Longo L, Pearce W. Pregnancy-induced changes in ovine cerebral arteries. Am J Physiol. 1992;262:R137–43.

    CAS  PubMed  Google Scholar 

  38. Hull AD, Longo LD, Long DM, Pearce WJ. Pregnancy alters cerebrovascular adaptation to high-altitude hypoxia. Am J Physiol. 1994;266:R765–72.

    CAS  PubMed  Google Scholar 

  39. Hull AD, White CR, Pearce WJ. Endothelium-derived relaxing factor and cyclic GMP-dependent vasorelaxation in human chorionic plate arteries. Placenta. 1994;15:365–75.

    Article  CAS  PubMed  Google Scholar 

  40. Pearce WJ, Hull AD, Long DM, Longo LD. Effects of maturation on ovine cerebrovascular function. Proc West Pharmacol Soc. 1991;34:247–54.

    CAS  PubMed  Google Scholar 

  41. Elliott CF, Pearce WJ. Effects of maturation on cell water, protein, and DNA content in ovine cerebral arteries. J Appl Physiol. 1995;79:831–7.

    CAS  PubMed  Google Scholar 

  42. Elliott SR, Pearce WJ. Developmental contractility changes in ovine peripheral cerebral arteries. Proc West Pharmacol Soc. 1993;36:63–70.

    CAS  PubMed  Google Scholar 

  43. Pearce WJ, Hull AD, Long DM, Longo LD. Developmental changes in ovine cerebral artery composition and reactivity. Am J Physiol. 1991;261:R458–65.

    CAS  PubMed  Google Scholar 

  44. Zurcher SD, Pearce WJ. Maturation and hypoxia influence the calcium dose response relationship in ovine cerebral arteries. Proc West Pharmacol Soc. 1993;36:71–5.

    CAS  PubMed  Google Scholar 

  45. Elliott SR, Pearce WJ. Effects of maturation on alpha-adrenergic receptor affinity and occupancy in small cerebral arteries. Am J Physiol. 1994;267:H757–63.

    CAS  PubMed  Google Scholar 

  46. Pearce WJ, Elliott SR. Maturation enhances the sensitivity of ovine cerebral arteries to the ATP-sensitive potassium channel activator lemakalim. Pediatr Res. 1994;35:729–32.

    Article  CAS  PubMed  Google Scholar 

  47. Pearce WJ, Duckles SP, Buchholz J. Effects of maturation on adrenergic neurotransmission in ovine cerebral arteries. Am J Physiol. 1999;277:R931–7.

    CAS  PubMed  Google Scholar 

  48. Pearce WJ, Longo LD. Developmental aspects of endothelial function. Semin Perinatol. 1991;15:40–8.

    CAS  PubMed  Google Scholar 

  49. Pearson PJ, Vanhoutte PM. Vasodilator and vasoconstrictor substances produced by the endothelium. Rev Physiol Biochem Pharmacol. 1993;122:1–67.

    Article  CAS  PubMed  Google Scholar 

  50. Pearce W, Hull A, Long D, White C. Effects of maturation on cyclic GMP-dependent vasodilation in ovine basilar and carotid arteries. Pediatr Res. 1994;36:25–33.

    Article  CAS  PubMed  Google Scholar 

  51. White CR, Pearce WJ. Effects of maturation on cyclic GMP metabolism in ovine carotid arteries. Pediatr Res. 1996;39:25–31.

    Article  CAS  PubMed  Google Scholar 

  52. Zurcher SD, Pearce WJ. Maturation modulates serotonin- and potassium-induced calcium-45 uptake in ovine carotid and cerebral arteries. Pediatr Res. 1995;38:493–500.

    Article  CAS  PubMed  Google Scholar 

  53. Akopov SE, Zhang L, Pearce WJ. Maturation alters the contractile role of calcium in ovine basilar arteries. Pediatr Res. 1998;44:154–60.

    Article  CAS  PubMed  Google Scholar 

  54. Longo LD, Ueno N, Zhao Y, Pearce WJ, Zhang L. Developmental changes in alpha 1-adrenergic receptors, IP3 responses, and NE-induced contraction in cerebral arteries. Am J Physiol. 1996;271:H2313–9.

    CAS  PubMed  Google Scholar 

  55. Zhou L, Zhao Y, Nijland R, Zhang L, Longo LD. Ins(1,4,5)P3 receptors in cerebral arteries: changes with development and high-altitude hypoxia. Am J Physiol. 1997;272:R1954–9.

    CAS  PubMed  Google Scholar 

  56. Akopov SE, Zhang L, Pearce WJ. Physiological variations in ovine cerebrovascular calcium sensitivity. Am J Physiol. 1997;272(5 Pt 2):H2271–81.

    CAS  PubMed  Google Scholar 

  57. Akopov SE, Zhang L, Pearce WJ. Developmental changes in the calcium sensitivity of rabbit cranial arteries. Biol Neonate. 1998;74(1):60–71.

    Article  CAS  PubMed  Google Scholar 

  58. Akopov SE, Zhang L, Pearce WJ. Regulation of Ca2+ sensitization by PKC and rho proteins in ovine cerebral arteries: effects of artery size and age. Am J Physiol. 1998;275:H930–9.

    CAS  PubMed  Google Scholar 

  59. Long W, Zhao Y, Zhang L, Longo L. Role of Ca(2+) channels in NE-induced increase in (Ca(2+))(i) and tension in fetal and adult cerebral arteries. Am J Physiol. 1999;277:R286–94.

    CAS  PubMed  Google Scholar 

  60. Gilbert RD, Pearce WJ, Ashwal S, Longo LD. Effects of hypoxia on contractility of isolated fetal lamb cerebral arteries. J Dev Physiol. 1990;13:199–203.

    CAS  PubMed  Google Scholar 

  61. Zurcher SD, Ong-Veloso GL, Akopov SE, Pearce WJ. Maturational modification of hypoxic relaxation in ovine carotid and cerebral arteries: role of endothelium. Biol Neonate. 1998;74:222–32.

    Article  CAS  PubMed  Google Scholar 

  62. Longo LD, Pearce WJ. Fetal and newborn cerebral vascular responses and adaptations to hypoxia. Semin Perinatol. 1991;15:49–57.

    CAS  PubMed  Google Scholar 

  63. Longo LD, Hull AD, Long DM, Pearce WJ. Cerebrovascular adaptations to high-altitude hypoxemia in fetal and adult sheep. Am J Physiol. 1993;264:R65–72.

    CAS  PubMed  Google Scholar 

  64. Ueno N, Zhao Y, Zhang L, Longo LD. High altitude-induced changes in alpha1-adrenergic receptors and Ins(1,4,5)P3 responses in cerebral arteries. Am J Physiol. 1997;272:R669–74.

    CAS  PubMed  Google Scholar 

  65. Longo LD, Pearce WJ. High altitude, hypoxic-induced modulation of noradrenergic-mediated responses in fetal and adult cerebral arteries. Comp Biochem Physiol A Mol Integr Physiol. 1998;119:683–94.

    Article  CAS  PubMed  Google Scholar 

  66. Teng GQ, Williams J, Zhang L, Purdy R, Pearce WJ. Effects of maturation, artery size, and chronic hypoxia on 5-HT receptor type in ovine cranial arteries. Am J Physiol. 1998;275:R742–53.

    CAS  PubMed  Google Scholar 

  67. Longo LD, Packianathan S, McQueary JA, Stagg RB, Byus CV, Cain CD. Acute hypoxia increases ornithine decarboxylase activity and polyamine concentrations in fetal rat brain. Proc Natl Acad Sci U S A. 1993;90:692–6.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  68. Packianathan S, Cain CD, Stagg RB, Longo LD. Ornithine decarboxylase activity in fetal and newborn rat brain: responses to hypoxic and carbon monoxide hypoxia. Brain Res Dev Brain Res. 1993;76:131–40.

    Article  CAS  PubMed  Google Scholar 

  69. Packianathan S, Cain CD, Liwnicz BH, Longo LD. Ornithine decarboxylase activity in vitro in response to acute hypoxia: a novel use of newborn rat brain slices. Brain Res. 1995;688:61–71.

    Article  CAS  PubMed  Google Scholar 

  70. Saito K, Packianathan S, Longo LD. Free radical-induced elevation of ornithine decarboxylase activity in developing rat brain slices. Brain Res. 1997;763:232–8.

    Article  CAS  PubMed  Google Scholar 

  71. Longo LD, Packianathan S. Hypoxia-ischaemia and the developing brain: hypotheses regarding the pathophysiology of fetal-neonatal brain damage. Br J Obstet Gynaecol. 1997;104:652–62.

    Article  CAS  PubMed  Google Scholar 

  72. Ashwal S, Cole DJ, Osborne S, Osborne TN, Pearce WJ. A new model of neonatal stroke: reversible middle cerebral artery occlusion in the rat pup. Pediatr Neurol. 1995;12:191–6.

    Article  CAS  PubMed  Google Scholar 

  73. Ashwal S, Cole DJ, Osborne S, Osborne TN, Pearce WJ. L-NAME reduces infarct volume in a filament model of transient middle cerebral artery occlusion in the rat pup. Pediatr Res. 1995;38:652–6.

    Article  CAS  PubMed  Google Scholar 

  74. Pearce WJ, Tone B, Ashwal S. Maturation alters cerebral NOS kinetics in the spontaneously hypertensive rat. Am J Physiol. 1997;273:R1367–73.

    CAS  PubMed  Google Scholar 

  75. Ashwal S, Tone B, Tian HR, Cole DJ, Pearce WJ. Core and penumbral nitric oxide synthase activity during cerebral ischemia and reperfusion. Stroke. 1998;29:1037–46. discussion 47.

    Article  CAS  PubMed  Google Scholar 

  76. Ashwal S, Tone B, Tian HR, Cole DJ, Liwnicz BH, Pearce WJ. Core and penumbral nitric oxide synthase activity during cerebral ischemia and reperfusion in the rat pup. Pediatr Res. 1999;46:390–400.

    Article  CAS  PubMed  Google Scholar 

  77. Liu Y, Longo LD, De Leon M. In situ and immunocytochemical localization of E-FABP mRNA and protein during neuronal migration and differentiation in the rat brain. Brain Res. 2000;852:16–27.

    Article  CAS  PubMed  Google Scholar 

  78. Zhao Y, Xiao H, Long W, Pearce WJ, Longo LD. Expression of several cytoskeletal proteins in ovine cerebral arteries: developmental and functional considerations. J Physiol. 2004;558:623–32.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  79. Long W, Zhang L, Longo LD. Cerebral artery K(ATP)- and K(Ca)-channel activity and contractility: changes with development. Am J Physiol Regul Integr Comp Physiol. 2000;279:R2004–14.

    CAS  PubMed  Google Scholar 

  80. Teng GQ, Nauli SM, Brayden JE, Pearce WJ. Maturation alters the contribution of potassium channels to resting and 5HT-induced tone in small cerebral arteries of the sheep. Brain Res Dev Brain Res. 2002;133:81–91.

    Article  CAS  PubMed  Google Scholar 

  81. Lin MT, Hessinger DA, Pearce WJ, Longo LD. Developmental differences in Ca2 + -activated K + channel activity in ovine basilar artery. Am J Physiol Heart Circ Physiol. 2003;285:H701–9.

    CAS  PubMed  Google Scholar 

  82. Lin MT, Longo LD, Pearce WJ, Hessinger DA. Ca2 + -activated K + channel-associated phosphatase and kinase activities during development. Am J Physiol Heart Circ Physiol. 2005;289:H414–25.

    Article  CAS  PubMed  Google Scholar 

  83. Lin MT, Hessinger DA, Pearce WJ, Longo LD. Modulation of BK channel calcium affinity by differential phosphorylation in developing ovine basilar artery myocytes. Am J Physiol Heart Circ Physiol. 2006;291:H732–40.

    Article  CAS  PubMed  Google Scholar 

  84. Bishai JM, Penninga L, Nijland R, et al. Pre- and postjunctional alpha(2)-adrenergic receptors in fetal and adult ovine cerebral arteries. Am J Physiol Regul Integr Comp Physiol. 2002;282:R1654–62.

    CAS  PubMed  Google Scholar 

  85. Pearce WJ, Williams JM, Chang MM, Gerthoffer WT. ERK inhibition attenuates 5-HT-induced contractions in fetal and adult ovine carotid arteries. Arch Physiol Biochem. 2003;111:36–44.

    Article  CAS  PubMed  Google Scholar 

  86. Angeles DM, Chang M, Leong V, Oberg KC, Pearce WJ. Dexamethasone alters vascular reactivity by enhancing COX-related vasodilatation in fetal ovine carotids. Biol Neonate. 2006;90:1–8.

    Article  CAS  PubMed  Google Scholar 

  87. Angeles DM, Pearce WJ. Effect of dopamine on vascular reactivity in near-term lamb carotids: role of the endothelium. Biol Res Nurs. 2006;8:97–103.

    Article  CAS  PubMed  Google Scholar 

  88. Long W, Zhang L, Longo LD. Cerebral artery sarcoplasmic reticulum Ca(2+) stores and contractility: changes with development. Am J Physiol Regul Integr Comp Physiol. 2000;279:R860–73.

    CAS  PubMed  Google Scholar 

  89. Nauli SM, Williams JM, Akopov SE, Zhang L, Pearce WJ. Developmental changes in ryanodine- and IP(3)-sensitive Ca(2+) pools in ovine basilar artery. Am J Physiol Cell Physiol. 2001;281:C1785–96.

    CAS  PubMed  Google Scholar 

  90. Blood AB, Zhao Y, Long W, Zhang L, Longo LD. L-type Ca2+ channels in fetal and adult ovine cerebral arteries. Am J Physiol Regul Integr Comp Physiol. 2002;282:R131–8.

    CAS  PubMed  Google Scholar 

  91. Geary GG, Osol GJ, Longo LD. Development affects in vitro vascular tone and calcium sensitivity in ovine cerebral arteries. J Physiol. 2004;558:883–96.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  92. Hubbell MC, Semotiuk AJ, Thorpe RB, et al. Chronic hypoxia and VEGF differentially modulate abundance and organization of myosin heavy chain isoforms in fetal and adult ovine arteries. Am J Physiol Cell Physiol. 2012;303:C1090–103.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  93. Adeoye OO, Butler SM, Hubbell MC, Semotiuk A, Williams JM, Pearce WJ. Contribution of increased VEGF receptors to hypoxic changes in fetal ovine carotid artery contractile proteins. Am J Physiol Cell Physiol. 2013;304:C656–65.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  94. Nauli SM, Williams JM, Gerthoffer WT, Pearce WJ. Chronic hypoxia modulates relations among calcium, myosin light chain phosphorylation, and force differently in fetal and adult ovine basilar arteries. J Appl Physiol. 2005;99:120–7.

    Article  CAS  PubMed  Google Scholar 

  95. Charles SM, Zhang L, Longo LD, Buchholz JN, Pearce WJ. Postnatal maturation attenuates pressure-evoked myogenic tone and stretch-induced increases in Ca2+ in rat cerebral arteries. Am J Physiol Regul Integr Comp Physiol. 2007;293:R737–44.

    Article  CAS  PubMed  Google Scholar 

  96. Sandoval RJ, Injeti ER, Gerthoffer WT, Pearce WJ. Postnatal maturation modulates relationships among cytosolic Ca2+, myosin light chain phosphorylation, and contractile tone in ovine cerebral arteries. Am J Physiol Heart Circ Physiol. 2007;293:H2183–92.

    Article  CAS  PubMed  Google Scholar 

  97. Sandoval RJ, Injeti ER, Williams JM, Georthoffer WT, Pearce WJ. Myogenic contractility is more dependent on myofilament calcium sensitization in term fetal than adult ovine cerebral arteries. Am J Physiol Heart Circ Physiol. 2007;293:H548–56.

    Article  CAS  PubMed  Google Scholar 

  98. Injeti ER, Sandoval RJ, Williams JM, Smolensky AV, Ford LE, Pearce WJ. Maximal stimulation-induced in situ myosin light chain kinase activity is upregulated in fetal compared with adult ovine carotid arteries. Am J Physiol Heart Circ Physiol. 2008;295:H2289–98.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  99. Charles SM, Zhang L, Cipolla MJ, Buchholz JN, Pearce WJ. The roles of cytosolic Ca2+ concentration and myofilament Ca2+ sensitization in age-dependent cerebrovascular myogenic tone. Am J Physiol Heart Circ Physiol. 2010;299:H1034–44.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  100. Longo LD, Zhao Y, Long W, et al. Dual role of PKC in modulating pharmacomechanical coupling in fetal and adult cerebral arteries. Am J Physiol Regul Integr Comp Physiol. 2000;279:R1419–29.

    CAS  PubMed  Google Scholar 

  101. Zhao Y, Long W, Zhang L, Longo LD. Extracellular signal-regulated kinases and contractile responses in ovine adult and fetal cerebral arteries. J Physiol. 2003;551:691–703.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  102. Goyal R, Mittal A, Chu N, Shi L, Zhang L, Longo LD. Maturation and the role of PKC-mediated contractility in ovine cerebral arteries. Am J Physiol Heart Circ Physiol. 2009;297:H2242–52.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  103. Cary SP, Winger JA, Derbyshire ER, Marletta MA. Nitric oxide signaling: no longer simply on or off. Trends Biochem Sci. 2006;31:231–9.

    Article  CAS  PubMed  Google Scholar 

  104. Nauli SM, Ally A, Zhang L, Gerthoffer WT, Pearce WJ. Maturation attenuates the effects of cGMP on contraction, (Ca2+)i and Ca2+ sensitivity in ovine basilar arteries. Gen Pharmacol. 2000;35:107–18.

    Article  CAS  PubMed  Google Scholar 

  105. White CR, Hao X, Pearce WJ. Maturational differences in soluble guanylate cyclase activity in ovine carotid and cerebral arteries. Pediatr Res. 2000;47:369–75.

    Article  CAS  PubMed  Google Scholar 

  106. Nauli SM, Williams JM, Pearce WJ. Effects of maturation on mechanisms of cGMP-induced cerebral vasodilatation. Dev Neurosci. 2001;23:224–33.

    Article  CAS  PubMed  Google Scholar 

  107. Nauli SM, Zhang L, Pearce WJ. Maturation depresses cGMP-mediated decreases in (Ca2+)i and Ca2+ sensitivity in ovine cranial arteries. Am J Physiol Heart Circ Physiol. 2001;280:H1019–28.

    CAS  PubMed  Google Scholar 

  108. Nauli SM, White CR, Hull AD, Pearce WJ. Maturation alters cyclic nucleotide and relaxation responses to nitric oxide donors in ovine cerebral arteries. Biol Neonate. 2003;83:123–35.

    Article  CAS  PubMed  Google Scholar 

  109. Geary GG, Buchholz JN, Pearce WJ. Maturation depresses mouse cerebrovascular tone through endothelium-dependent mechanisms. Am J Physiol Regul Integr Comp Physiol. 2003;284:R734–41.

    CAS  PubMed  Google Scholar 

  110. White CR, Hamade MW, Siami K, et al. Maturation enhances fluid shear-induced activation of eNOS in perfused ovine carotid arteries. Am J Physiol Heart Circ Physiol. 2005;289:H2220–7.

    Article  CAS  PubMed  Google Scholar 

  111. Williams JM, Hull AD, Pearce WJ. Maturational modulation of endothelium-dependent vasodilatation in ovine cerebral arteries. Am J Physiol Regul Integr Comp Physiol. 2005;288:R149–57.

    Article  CAS  PubMed  Google Scholar 

  112. Williams JM, Pearce WJ. Age-dependent modulation of endothelium-dependent vasodilatation by chronic hypoxia in ovine cranial arteries. J Appl Physiol. 2006;100:225–32.

    Article  PubMed  Google Scholar 

  113. Angeles DM, Williams J, Purdy RE, Zhang L, Pearce WJ. Effects of maturation and acute hypoxia on receptor-IP(3) coupling in ovine common carotid arteries. Am J Physiol Regul Integr Comp Physiol. 2001;280:R410–7.

    CAS  PubMed  Google Scholar 

  114. Angeles DM, Williams J, Zhang L, Pearce WJ. Acute hypoxia modulates 5-HT receptor density and agonist affinity in fetal and adult ovine carotid arteries. Am J Physiol Heart Circ Physiol. 2000;279:H502–10.

    CAS  PubMed  Google Scholar 

  115. Long W, Zhang L, Longo LD. Fetal and adult cerebral artery K(ATP) and K(Ca) channel responses to long-term hypoxia. J Appl Physiol. 2002;92:1692–701.

    Article  CAS  PubMed  Google Scholar 

  116. Mbaku EM, Zhang L, Pearce WJ, Duckles SP, Buchholz J. Chronic hypoxia alters the function of NOS nerves in cerebral arteries of near-term fetal and adult sheep. J Appl Physiol. 2003;94:724–32.

    PubMed  Google Scholar 

  117. Behringer EJ, Leite LD, Buchholz NE, et al. Maturation and long-term hypoxia alters calcium-induced calcium release in sheep cerebrovascular sympathetic neurons. J Appl Physiol. 2009;107:1223–34.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  118. Pearce WJ, Williams JM, Hamade MW, Chang MM, White CR. Chronic hypoxia modulates endothelium-dependent vasorelaxation through multiple independent mechanisms in ovine cranial arteries. Adv Exp Med Biol. 2006;578:87–92.

    Article  CAS  PubMed  Google Scholar 

  119. Williams JM, White CR, Chang MM, Injeti ER, Zhang L, Pearce WJ. Chronic hypoxic decreases in soluble guanylate cyclase protein and enzyme activity are age dependent in fetal and adult ovine carotid arteries. J Appl Physiol. 2006;100:1857–66.

    Article  CAS  PubMed  Google Scholar 

  120. Pearce WJ, Williams JM, White CR, Lincoln TM. Effects of chronic hypoxia on soluble guanylate cyclase activity in fetal and adult ovine cerebral arteries. J Appl Physiol. 2009;107:192–9.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  121. Longo LD, Pearce WJ. Fetal cerebrovascular acclimatization responses to high-altitude, long-term hypoxia: a model for prenatal programming of adult disease? Am J Physiol Regul Integr Comp Physiol. 2005;288:R16–24.

    Article  CAS  PubMed  Google Scholar 

  122. Pearce W. Hypoxic regulation of the fetal cerebral circulation. J Appl Physiol. 2006;100:731–8.

    Article  CAS  PubMed  Google Scholar 

  123. Bishai JM, Blood AB, Hunter CJ, Longo LD, Power GG. Fetal lamb cerebral blood flow (CBF) and oxygen tensions during hypoxia: a comparison of laser Doppler and microsphere measurements of CBF. J Physiol. 2003;546:869–78.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  124. Hunter CJ, Blood AB, White CR, Pearce WJ, Power GG. Role of nitric oxide in hypoxic cerebral vasodilatation in the ovine fetus. J Physiol. 2003;549:625–33.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  125. Lotgering FK, Bishai JM, Struijk PC, et al. Ten-minute umbilical cord occlusion markedly reduces cerebral blood flow and heat production in fetal sheep. Am J Obstet Gynecol. 2003;189:233–8.

    Article  PubMed  Google Scholar 

  126. Lotgering FK, Bishai JM, Struijk PC, et al. Absence of robust ischemic preconditioning by five 1-minute total umbilical cord occlusions in fetal sheep. J Soc Gynecol Investig. 2004;11:449–56.

    Article  PubMed  Google Scholar 

  127. Nishida N, Blood AB, Hunter CJ, et al. Role of prostanoids in the regulation of cerebral blood flow during normoxia and hypoxia in the fetal sheep. Pediatr Res. 2006;60:524–9.

    Article  CAS  PubMed  Google Scholar 

  128. Tomimatsu T, Pena JP, Longo LD. Fetal hypercapnia and cerebral tissue oxygenation: studies in near-term sheep. Pediatr Res. 2006;60:711–6.

    Article  PubMed  Google Scholar 

  129. Tomimatsu T, Pereyra Pena J, Hatran DP, Longo LD. Maternal oxygen administration and fetal cerebral oxygenation: studies on near-term fetal lambs at both low and high altitude. Am J Obstet Gynecol. 2006;195:535–41.

    Article  CAS  PubMed  Google Scholar 

  130. Pena JP, Tomimatsu T, Hatran DP, McGill LL, Longo LD. Cerebral blood flow and oxygenation in ovine fetus: responses to superimposed hypoxia at both low and high altitude. J Physiol. 2007;578:359–70.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  131. Tomimatsu T, Lee SJ, Pena JP, Ross JM, Lang JA, Longo LD. Maternal caffeine administration and cerebral oxygenation in near-term fetal sheep. Reprod Sci. 2007;14:588–94.

    Article  CAS  PubMed  Google Scholar 

  132. Tomimatsu T, Pena JP, Longo LD. Fetal cerebral oxygenation: the role of maternal hyperoxia with supplemental CO2 in sheep. Am J Obstet Gynecol. 2007;196:359e1–5.

    Article  CAS  Google Scholar 

  133. Tomimatsu T, Pena JP, Longo LD. Fetal hypercapnia in high-altitude acclimatized sheep: cerebral blood flow and cerebral oxygenation. Reprod Sci. 2007;14:51–8.

    Article  PubMed  Google Scholar 

  134. Lee SJ, Hatran DP, Tomimatsu T, Pena JP, McAuley G, Longo LD. Fetal cerebral blood flow, electrocorticographic activity, and oxygenation: responses to acute hypoxia. J Physiol. 2009;587:2033–47.

    CAS  PubMed Central  PubMed  Google Scholar 

  135. Ashwal S, Pearce WJ. Animal models of neonatal stroke. Curr Opin Pediatr. 2001;13:506–16.

    Article  CAS  PubMed  Google Scholar 

  136. Angeles DM, Wycliffe N, Michelson D, et al. Use of opioids in asphyxiated term neonates: effects on neuroimaging and clinical outcome. Pediatr Res. 2005;57:873–8.

    Article  CAS  PubMed  Google Scholar 

  137. Goyal R, Henderson DA, Chu N, Longo LD. Ovine middle cerebral artery characterization and quantification of ultrastructure and other features: changes with development. Am J Physiol Regul Integr Comp Physiol. 2012;302:R433–45.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  138. Goyal R, Longo LD. Gene expression in sheep carotid arteries: major changes with maturational development. Pediatr Res. 2012;72:137–46.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  139. Goyal R, Mittal A, Chu N, Zhang L, Longo LD. alpha(1)-Adrenergic receptor subtype function in fetal and adult cerebral arteries. Am J Physiol Heart Circ Physiol. 2010;298:H1797–806.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  140. Goyal R, Van Wickle J, Goyal D, Matei N, Longo LD. Antenatal maternal long-term hypoxia: acclimatization responses with altered gene expression in ovine fetal carotid arteries. PLoS One. 2013;8:e82200.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  141. Goyal R, Mittal A, Chu N, Arthur RA, Zhang L, Longo LD. Maturation and long-term hypoxia-induced acclimatization responses in PKC-mediated signaling pathways in ovine cerebral arterial contractility. Am J Physiol Regul Integr Comp Physiol. 2010;299:R1377–86.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  142. Butler SM, Abrassart JM, Hubbell MC, et al. Contributions of VEGF to age-dependent transmural gradients in contractile protein expression in ovine carotid arteries. Am J Physiol Cell Physiol. 2011;301(3):C653–66.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  143. Silpanisong J, Pearce WJ. Vasotrophic regulation of age-dependent hypoxic cerebrovascular remodeling. Curr Vasc Pharmacol. 2013;11:544–63.

    Article  CAS  PubMed  Google Scholar 

  144. Pearce WJ, Butler SM, Abrassart JM, Williams JM. Fetal cerebral oxygenation: the homeostatic role of vascular adaptations to hypoxic stress. Adv Exp Med Biol. 2011;915:225–32.

    Article  Google Scholar 

  145. Thorpe RB, Stockman SL, Williams JM, Lincoln TM, Pearce WJ. Hypoxic depression of PKG-mediated inhibition of serotonergic contraction in ovine carotid arteries. Am J Physiol Regul Integr Comp Physiol. 2013;304:R734–43.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  146. Pearce WJ, Khorram O. Maturation and differentiation of the fetal vasculature. Clin Obstet Gynecol. 2013;56:537–48.

    Article  PubMed  Google Scholar 

  147. Khorram O, Han G, Bagherpour R, et al. The effect of maternal undernutrition on vascular expression of micro and messenger RNA in newborn and aging offspring. Am J Physiol Regul Integr Comp Physiol. 2010;298:R1366–74.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  148. Goyal R, Goyal D, Leitzke A, Gheorghe CP, Longo LD. Brain renin-angiotensin system: fetal epigenetic programming by maternal protein restriction during pregnancy. Reprod Sci. 2010;17:227–38.

    Article  PubMed  CAS  Google Scholar 

  149. Pearce WJ. Epigenetics: an expanding new piece of the stroke puzzle. Trans Stroke Res. 2011;2:243–7.

    Article  CAS  Google Scholar 

  150. Zhang JH, Badaut J, Tang J, Obenaus A, Hartman R, Pearce WJ. The vascular neural network-a new paradigm in stroke pathophysiology. Nat Rev Neurol. 2012;8:711–6.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

Download references

Acknowledgements

The work summarized in this manuscript was supported by USPHS Grants HL54120, HD31266, HL64867, NS076945 and the Loma Linda University School of Medicine.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to William J. Pearce Ph.D. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media New York

About this paper

Cite this paper

Pearce, W.J. (2014). The Fetal Cerebral Circulation: Three Decades of Exploration by the LLU Center for Perinatal Biology. In: Zhang, L., Ducsay, C. (eds) Advances in Fetal and Neonatal Physiology. Advances in Experimental Medicine and Biology, vol 814. Springer, New York, NY. https://doi.org/10.1007/978-1-4939-1031-1_16

Download citation

Publish with us

Policies and ethics