Skip to main content

From the Producer Microorganisms to the Lasso Scaffold

  • Chapter
  • First Online:
Lasso Peptides

Part of the book series: SpringerBriefs in Microbiology ((BRIEFSMICROBIOL))

  • 760 Accesses

Abstract

Lasso peptides are members of the ribosomally synthesized and post-translationally modified peptides produced by bacteria. Currently known lasso peptides are produced in the phyla of Proteobacteria or Actinobacteria. They attract considerable attention because of their original interlocked structure endowed with high stability and important biological activities ranging from antimicrobials to enzyme inhibitors or receptor antagonists. The structure of lasso peptides consists of a peptidic tail trapped and locked into a macrolactam ring, forming a loop standing above and a threaded tail below the ring. This chapter describes the currently known lasso peptides concerning their origin, production and purification, structure and factors that contribute to maintain the lasso topology.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Arnison PG, Bibb MJ, Bierbaum G, Bowers AA, Bugni TS, Bulaj G, Camarero JA, Campopiano DJ, Challis GL, Clardy J, Cotter PD, Craik DJ, Dawson M, Dittmann E, Donadio S, Dorrestein PC, Entian KD, Fischbach MA, Garavelli JS, Goransson U, Gruber CW, Haft DH, Hemscheidt TK, Hertweck C, Hill C, Horswill AR, Jaspars M, Kelly WL, Klinman JP, Kuipers OP, Link AJ, Liu W, Marahiel MA, Mitchell DA, Moll GN, Moore BS, Muller R, Nair SK, Nes IF, Norris GE, Olivera BM, Onaka H, Patchett ML, Piel J, Reaney MJ, Rebuffat S, Ross RP, Sahl HG, Schmidt EW, Selsted ME, Severinov K, Shen B, Sivonen K, Smith L, Stein T, Sussmuth RD, Tagg JR, Tang GL, Truman AW, Vederas JC, Walsh CT, Walton JD, Wenzel SC, Willey JM, van der Donk WA (2013) Ribosomally synthesized and posttranslationally modified peptide natural products: overview and recommendations for a universal nomenclature. Nat Prod Rep 30(1):108–160. doi:10.1039/c2np20085f

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Bayro MJ, Mukhopadhyay J, Swapna GV, Huang JY, Ma LC, Sineva E, Dawson PE, Montelione GT, Ebright RH (2003) Structure of antibacterial peptide microcin J25: a 21-residue lariat protoknot. J Am Chem Soc 125(41):12382–12383

    Article  PubMed  CAS  Google Scholar 

  • Blond A, Peduzzi J, Goulard C, Chiuchiolo MJ, Barthelemy M, Prigent Y, Salomón RA, Farías RN, Moreno F, Rebuffat S (1999) The cyclic structure of microcin J25, a 21-residue peptide antibiotic from Escherichia coli. Eur J Biochem 259(3):747–755

    Article  PubMed  CAS  Google Scholar 

  • Blond A, Cheminant M, Segalas-Milazzo I, Peduzzi J, Barthelemy M, Goulard C, Salomon R, Moreno F, Farias R, Rebuffat S (2001) Solution structure of microcin J25, the single macrocyclic antimicrobial peptide from Escherichia coli. Eur J Biochem 268(7):2124–2133

    Article  PubMed  CAS  Google Scholar 

  • Blond A, Cheminant M, Destoumieux-Garzón D, Segalas-Milazzo I, Peduzzi J, Goulard C, Rebuffat S (2002) Thermolysin-linearized microcin J25 retains the structured core of the native macrocyclic peptide and displays antimicrobial activity. Eur J Biochem 269(24):6212–6222

    Article  PubMed  CAS  Google Scholar 

  • Brett PJ, DeShazer D, Woods DE (1998) Burkholderia thailandensis sp. nov., a Burkholderia pseudomallei-like species. Int J Syst Bacteriol 48(Pt 1):317–320

    Article  PubMed  CAS  Google Scholar 

  • Chiuchiolo MJ, Delgado MA, Farias RN, Salomon RA (2001) Growth-phase-dependent expression of the cyclopeptide antibiotic microcin J25. J Bacteriol 183(5):1755–1764. doi:10.1128/JB.183.5.1755-1764.2001

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Constantine KL, Friedrichs MS, Detlefsen D, Nishio M, Tsunakawa M, Furumai T, Ohkuma H, Oki T, Hill S, Bruccoleri RE et al (1995) High-resolution solution structure of siamycin II: novel amphipathic character of a 21-residue peptide that inhibits HIV fusion. J Biomol NMR 5(3):271–286

    Article  PubMed  CAS  Google Scholar 

  • Craik DJ, Daly NL (2007) NMR as a tool for elucidating the structures of circular and knotted proteins. Mol Biosyst 3(4):257–265. doi:10.1039/b616856f

    Article  PubMed  CAS  Google Scholar 

  • Craik DJ, Malik U (2013) Cyclotide biosynthesis. Curr Opin Chem Biol 17(4):546–554. doi:10.1016/j.cbpa.2013.05.033

    Article  PubMed  CAS  Google Scholar 

  • Dasgupta S, Huang KW, Wu J (2012) Trifluoromethyl acting as stopper in [2]rotaxane. Chem Commun (Camb) 48(40):4821–4823. doi:10.1039/c2cc31009k

    Article  CAS  Google Scholar 

  • Diep DB, Havarstein LS, Nes IF (1995) A bacteriocin-like peptide induces bacteriocin synthesis in Lactobacillus plantarum C11. Mol Microbiol 18(4):631–639

    Article  PubMed  CAS  Google Scholar 

  • Diep DB, Havarstein LS, Nes IF (1996) Characterization of the locus responsible for the bacteriocin production in Lactobacillus plantarum C11. J Bacteriol 178(15):4472–4483

    PubMed  CAS  PubMed Central  Google Scholar 

  • Doidge EM (1915) A bacterial disease of the mango. Bacillus mangiferae n. sp. Ann Appl Biol 2:1–45

    Article  Google Scholar 

  • Ducasse R, Li Y, Blond A, Zirah S, Lescop E, Goulard C, Guittet E, Pernodet JL, Rebuffat S (2012a) Sviceucin, a lasso peptide from Streptomyces sviceus: isolation and structure analysis. J Pep Sci 18(Supp 1):67–68

    Google Scholar 

  • Ducasse R, Yan K-P, Goulard C, Blond A, Li Y, Lescop E, Guittet E, Rebuffat S, Zirah S (2012b) Sequence determinants governing the topology and biological activity of a lasso peptide, microcin J25. ChemBioChem 13(3):371–380

    Google Scholar 

  • Duquesne S, Destoumieux-Garzón D, Peduzzi J, Rebuffat S (2007) Microcins, gene-encoded antibacterial peptides from enterobacteria. Nat Prod Rep 24(4):708–734. doi:10.1039/b516237h

    Article  PubMed  CAS  Google Scholar 

  • Eaton TE, Ford LM, Godfrey OW, Huber MLB, Zmijewski MJ (1989) Process for producing the A-21978C antibiotics. Vol US 4800157A. Google Patents

    Google Scholar 

  • Esumi Y, Suzuki Y, Itoh Y, Uramoto M, Kimura K, Goto M, Yoshihama M, Ichikawa T (2002) Propeptin, a new inhibitor of prolyl endopeptidase produced by microbispora II. Determination of chemical structure. J Antibiot 55(3):296–300

    Article  PubMed  CAS  Google Scholar 

  • Frechet D, Guitton JD, Herman F, Faucher D, Helynck G, Monegier du Sorbier B, Ridoux JP, James-Surcouf E, Vuilhorgne M (1994) Solution structure of RP 71955, a new 21 amino acid tricyclic peptide active against HIV-1 virus. Biochemistry 33(1):42–50

    Article  PubMed  CAS  Google Scholar 

  • Gai Z, Yu B, Li L, Wang Y, Ma C, Feng J, Deng Z, Xu P (2007) Cometabolic degradation of dibenzofuran and dibenzothiophene by a newly isolated carbazole-degrading Sphingomonas sp. strain. Appl Environ Microbiol 73(9):2832–2838. doi:10.1128/AEM.02704-06

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Hanka LJ, Dietz A (1973) U-42, 126, a new antimetabolite antibiotic: production, biological activity, and taxonomy of the producing microorganism. Antimicrob Agents Chemother 3(3):425–431

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Hegemann JD, Zimmermann M, Xie X, Marahiel MA (2013a) Caulosegnins I-III: a highly diverse group of lasso peptides derived from a single biosynthetic gene cluster. J Am Chem Soc 135(1):210–222. doi:10.1021/ja308173b

    Google Scholar 

  • Hegemann JD, Zimmermann M, Zhu S, Klug D, Marahiel MA (2013b) Lasso peptides from proteobacteria: genome mining employing heterologous expression and mass spectrometry. Biopolymers. doi:10.1002/bip.22326

    Google Scholar 

  • Hegemann JD, Zimmermann M, Zhu S, Steuber H, Harms K, Xie X, Marahiel MA (2014) Xanthomonins I-III: a new class of lasso peptides with a seven-residue macrolactam ring. Angew Chem Int Ed Engl. doi:10.1002/anie.201309267

    Google Scholar 

  • Helynck G, Dubertret C, Mayaux JF, Leboul J (1993) Isolation of RP 71955, a new anti-HIV-1 peptide secondary metabolite. J Antibiot 46(11):1756–1757

    Article  PubMed  CAS  Google Scholar 

  • Hibbing ME, Fuqua C, Parsek MR, Peterson SB (2010) Bacterial competition: surviving and thriving in the microbial jungle. Nat Rev Microbiol 8(1):15–25. doi:10.1038/nrmicro2259

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Hoshino Y, Satoh T (1985) Dependence on calcium ions of gelatin hydrolysis by Rhodopseudomonas capsulata but not Rhodopseudomonas gelatinosa. Agric Biol Chem 49(11):3331–3332

    Article  CAS  Google Scholar 

  • Inokoshi J, Matsuhama M, Miyake M, Ikeda H, Tomoda H (2012) Molecular cloning of the gene cluster for lariatin biosynthesis of Rhodococcus jostii K01-B0171. Appl Microbiol Biotechnol 95(2):451–460. doi:10.1007/s00253-012-3973-8

    Article  PubMed  CAS  Google Scholar 

  • Iwatsuki M, Tomoda H, Uchida R, Gouda H, Hirono S, Omura S (2006) Lariatins, antimycobacterial peptides produced by Rhodococcus sp. K01-B0171, have a lasso structure. J Am Chem Soc 128(23):7486–7491

    Article  PubMed  CAS  Google Scholar 

  • Iwatsuki M, Uchida R, Takakusagi Y, Matsumoto A, Jiang CL, Takahashi Y, Arai M, Kobayashi S, Matsumoto M, Inokoshi J, Tomoda H, Omura S (2007) Lariatins, novel anti-mycobacterial peptides with a lasso structure, produced by Rhodococcus jostii K01-B0171. J Antibiot 60(6):357–363. doi:10.1038/ja.2007.48

    Article  PubMed  CAS  Google Scholar 

  • Jones JB, Lacy GH, Bouzar H, Stall RE, Schaad NW (2004) Reclassification of the xanthomonads associated with bacterial spot disease of tomato and pepper. Syst Appl Microbiol 27(6):755–762. doi:10.1078/0723202042369884

    Article  PubMed  CAS  Google Scholar 

  • Katahira R, Shibata K, Yamasaki M, Matsuda Y, Yoshida M (1995) Solution structure of endothelin B receptor selective antagonist RES-701-1 determined by 1H NMR spectroscopy. Bioorg Med Chem 3(9):1273–1280

    Article  PubMed  CAS  Google Scholar 

  • Katahira R, Yamasaki M, Matsuda Y, Yoshida M (1996) MS-271, a novel inhibitor of calmodulin-activated myosin light chain kinase from Streptomyces sp.–II. Solution structure of MS-271: characteristic features of the “lasso” structure. Bioorg Med Chem 4(1):121–129

    Article  PubMed  CAS  Google Scholar 

  • Kersten RD, Yang YL, Xu Y, Cimermancic P, Nam SJ, Fenical W, Fischbach MA, Moore BS, Dorrestein PC (2011) A mass spectrometry-guided genome mining approach for natural product peptidogenomics. Nat Chem Biol 7(11):794–802. doi:10.1038/nchembio.684

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Kimura K, Kanou F, Takahashi H, Esumi Y, Uramoto M, Yoshihama M (1997) Propeptin, a new inhibitor of prolyl endopeptidase produced by Microbispora. I. Fermentation, isolation and biological properties. J Antibiot 50(5):373–378

    Article  PubMed  CAS  Google Scholar 

  • Kimura K, Yamazaki M, Sasaki N, Yamashita T, Negishi S, Nakamura T, Koshino H (2007) Novel propeptin analog, propeptin-2, missing two amino acid residues from the propeptin C-terminus loses antibiotic potency. J Antibiot 60(8):519–523

    Article  PubMed  CAS  Google Scholar 

  • Knappe TA, Linne U, Robbel L, Marahiel MA (2009) Insights into the biosynthesis and stability of the lasso peptide capistruin. Chem Biol 16(12):1290–1298. doi:10.1016/j.chembiol.2009.11.009

    Article  PubMed  CAS  Google Scholar 

  • Knappe TA, Linne U, Zirah S, Rebuffat S, Xie X, Marahiel MA (2008) Isolation and structural characterization of capistruin, a lasso peptide predicted from the genome sequence of Burkholderia thailandensis E264. J Am Chem Soc 130(34):11446–11454

    Article  PubMed  CAS  Google Scholar 

  • Knappe TA, Linne U, Xie X, Marahiel MA (2010) The glucagon receptor antagonist BI-32169 constitutes a new class of lasso peptides. FEBS Lett 584(4):785–789. doi:10.1016/j.febslet.2009.12.046

    Article  PubMed  CAS  Google Scholar 

  • Knappe TA, Manzenrieder F, Mas-Moruno C, Linne U, Sasse F, Kessler H, Xie X, Marahiel MA (2011) Introducing lasso peptides as molecular scaffolds for drug design: engineering of an integrin antagonist. Angew Chem Int Ed Engl 50(37):8714–8717. doi:10.1002/anie.201102190

    Article  PubMed  CAS  Google Scholar 

  • Kuipers OP, Beerthuyzen MM, de Ruyter PG, Luesink EJ, de Vos WM (1995) Autoregulation of nisin biosynthesis in Lactococcus lactis by signal transduction. J Biol Chem 270(45):27299–27304

    Article  PubMed  CAS  Google Scholar 

  • Lee CS, Kim KK, Aslam Z, Lee ST (2007) Rhodanobacter thiooxydans sp. nov., isolated from a biofilm on sulfur particles used in an autotrophic denitrification process. Int J Syst Evol Microbiol 57(8):1175–1179

    Google Scholar 

  • Maksimov MO, Link AJ (2014) Prospecting genomes for lasso peptides. J Ind Microbiol Biotechnol 41(2):333–344. doi:10.1007/s10295-013-1357-4

    Article  PubMed  CAS  Google Scholar 

  • Maksimov MO, Pelczer I, Link AJ (2012) Precursor-centric genome-mining approach for lasso peptide discovery. Proc Natl Acad Sci U S A. doi:10.1073/pnas.1208978109

    Google Scholar 

  • Morishita Y, Chiba S, Tsukuda E, Tanaka T, Ogawa T, Yamasaki M, Yoshida M, Kawamoto I, Matsuda Y (1994) RES-701-1, a novel and selective endothelin type B receptor antagonist produced by Streptomyces sp. RE-701. I. Characterization of producing strain, fermentation, isolation, physico-chemical and biological properties. J Antibiot 47(3):269–275

    Article  PubMed  CAS  Google Scholar 

  • Nar H, Schmid A, Puder C, Potterat O (2010) High-resolution crystal structure of a lasso peptide. ChemMedChem 5(10):1689–1692. doi:10.1002/cmdc.201000264

    Article  PubMed  CAS  Google Scholar 

  • Ogawa T, Ochiai K, Tanaka T, Tsukuda E, Chiba S, Yano K, Yamasaki M, Yoshida M, Matsuda Y (1995) RES-701-2, -3 and -4, novel and selective endothelin type B receptor antagonists produced by Streptomyces sp. I. Taxonomy of producing strains, fermentation, isolation, and biochemical properties. J Antibiot 48(11):1213–1220

    Article  PubMed  CAS  Google Scholar 

  • Pal R, Bala S, Dadhwal M, Kumar M, Dhingra G, Prakash O, Prabagaran SR, Shivaji S, Cullum J, Holliger C, Lal R (2005) Hexachlorocyclohexane-degrading bacterial strains Sphingomonas paucimobilis B90A, UT26 and Sp+, having similar lin genes, represent three distinct species, Sphingobium indicum sp. nov., Sphingobium japonicum sp. nov. and Sphingobium francense sp. nov., and reclassification of [Sphingomonas] chungbukensis as Sphingobium chungbukense comb. nov. Int J Syst Evol Microbiol 55(Pt 5):1965–1972. doi:10.1099/ijs.0.63201-0

    Article  PubMed  CAS  Google Scholar 

  • Pan SJ, Link AJ (2011) Sequence diversity in the lasso peptide framework: discovery of functional microcin J25 variants with multiple amino acid substitutions. J Am Chem Soc 133(13):5016–5023. doi:10.1021/ja1109634

    Article  PubMed  CAS  Google Scholar 

  • Pan SJ, Cheung WL, Link AJ (2010) Engineered gene clusters for the production of the antimicrobial peptide microcin J25. Protein Expr Purif 71(2):200–206. doi:10.1016/j.pep.2009.12.010

    Article  PubMed  CAS  Google Scholar 

  • Pan SJ, Rajniak J, Maksimov MO, Link AJ (2011) The role of a conserved threonine residue in the leader peptide of lasso peptide precursors. Chem Commun (in press)

    Google Scholar 

  • Partida-Martinez LP, Groth I, Schmitt I, Richter W, Roth M, Hertweck C (2007b) Burkholderia rhizoxinica sp. nov. and Burkholderia endofungorum sp. nov., bacterial endosymbionts of the plant-pathogenic fungus Rhizopus microsporus. Int J Syst Evol Microbiol 57(Pt 11):2583–2590. doi:10.1099/ijs.0.64660-0

    Google Scholar 

  • Pérot-Taillandier M, Zirah S, Rebuffat S, Linne U, Marahiel MA, Cole RB, Tabet JC, Afonso C (2012) Determination of peptide topology through time-resolved double-resonance under electron capture dissociation conditions. Anal Chem 84(11):4957–4964. doi:10.1021/ac300607y

    Article  PubMed  Google Scholar 

  • Poindexter JS (1964) Biological properties and classification of the Caulobacter group. Bacteriol Rev 28:231–295

    PubMed  CAS  PubMed Central  Google Scholar 

  • Potterat O, Stefan H, Metzger JW, Gnau V, Zähner H, Jung G (1994) Aborycin—a tricyclic 21-peptide antibiotic isolated from Streptomyces griseoflavus. Liebigs Ann Chem 1994(7):741–743

    Article  Google Scholar 

  • Potterat O, Wagner K, Gemmecker G, Mack J, Puder C, Vettermann R, Streicher R (2004) BI-32169, a bicyclic 19-peptide with strong glucagon receptor antagonist activity from Streptomyces sp. J Nat Prod 67(9):1528–1531. doi:10.1021/np040093o

    Article  PubMed  CAS  Google Scholar 

  • Rebuffat S, Blond A, Destoumieux-Garzón D, Goulard C, Peduzzi J (2004) Microcin J25, from the macrocyclic to the lasso structure: implications for biosynthetic, evolutionary and biotechnological perspectives. Curr Protein Pept Sci 5(5):383–391

    Article  PubMed  CAS  Google Scholar 

  • Riley MA, Wertz JE (2002) Bacteriocins: evolution, ecology, and application. Annu Rev Microbiol 56:117–137. doi:10.1146/annurev.micro.56.012302.161024

    Article  PubMed  CAS  Google Scholar 

  • Rosengren KJ, Clark RJ, Daly NL, Goransson U, Jones A, Craik DJ (2003) Microcin J25 has a threaded sidechain-to-backbone ring structure and not a head-to-tail cyclized backbone. J Am Chem Soc 125(41):12464–12474

    Article  PubMed  CAS  Google Scholar 

  • Rosengren KJ, Blond A, Afonso C, Tabet JC, Rebuffat S, Craik DJ (2004) Structure of thermolysin cleaved microcin J25: extreme stability of a two-chain antimicrobial peptide devoid of covalent links. Biochemistry 43(16):4696–4702

    Article  PubMed  CAS  Google Scholar 

  • Salomón RA, Farías RN (1992) Microcin 25, a novel antimicrobial peptide produced by Escherichia coli. J Bacteriol 174(22):7428–7435

    PubMed  PubMed Central  Google Scholar 

  • Scannell AG, Hill C, Ross RP, Marx S, Hartmeier W, Arendt EK (2000) Continuous production of lacticin 3147 and nisin using cells immobilized in calcium alginate. J Appl Microbiol 89(4):573–579. doi:jam1149

    Article  PubMed  CAS  Google Scholar 

  • Severinov K, Semenova E, Kazakov A, Kazakov T, Gelfand MS (2007) Low-molecular-weight posttranslationally modified microcins. Mol Microbiol 65(6):1380–1394

    Article  PubMed  CAS  Google Scholar 

  • Solbiati JO, Ciaccio M, Farias RN, Salomon RA (1996) Genetic analysis of plasmid determinants for microcin J25 production and immunity. J Bacteriol 178(12):3661–3663

    PubMed  CAS  PubMed Central  Google Scholar 

  • Solbiati JO, Ciaccio M, Farías RN, González-Pastor JE, Moreno F, Salomón RA (1999) Sequence analysis of the four plasmid genes required to produce the circular peptide antibiotic microcin J25. J Bacteriol 181(8):2659–2662

    PubMed  CAS  PubMed Central  Google Scholar 

  • Um S, Kim YJ, Kwon H, Wen H, Kim SH, Kwon HC, Park S, Shin J, Oh DC (2013) Sungsanpin, a lasso peptide from a deep-sea streptomycete. J Nat Prod 76(5):873–879. doi:10.1021/np300902g

    Article  PubMed  CAS  Google Scholar 

  • Vancanneyt M, Schut F, Snauwaert C, Goris J, Swings J, Gottschal JC (2001) Sphingomonas alaskensis sp. nov., a dominant bacterium from a marine oligotrophic environment. Int J Syst Evol Microbiol 51(Pt 1):73–79

    PubMed  CAS  Google Scholar 

  • Weber W, Fischli W, Hochuli E, Kupfer E, Weibel EK (1991) Anantin–a peptide antagonist of the atrial natriuretic factor (ANF). I. Producing organism, fermentation, isolation and biological activity. J Antibiot 44(2):164–171

    Article  PubMed  CAS  Google Scholar 

  • Wilson KA, Kalkum M, Ottesen J, Yuzenkova J, Chait BT, Landick R, Muir T, Severinov K, Darst SA (2003) Structure of microcin J25, a peptide inhibitor of bacterial RNA polymerase, is a lassoed tail. J Am Chem Soc 125(41):12475–12483

    Article  PubMed  CAS  Google Scholar 

  • Wyss DF, Lahm HW, Manneberg M, Labhardt AM (1991) Anantin—a peptide antagonist of the atrial natriuretic factor (ANF). II. Determination of the primary sequence by NMR on the basis of proton assignments. J Antibiot 44(2):172–180

    Article  PubMed  CAS  Google Scholar 

  • Xie X, Marahiel MA (2012) NMR as an effective tool for the structure determination of lasso peptides. Chembiochem 13(5):621–625. doi:10.1002/cbic.201100754

    Article  PubMed  CAS  Google Scholar 

  • Yamasaki M, Yano K, Yoshida M, Matsuda Y, Yamaguchi K (1994) RES-701-1, a novel and selective endothelin type B receptor antagonist produced by Streptomyces sp. RE-701. II. Determination of the primary sequence. J Antibiot 47(3):276–280

    Article  PubMed  CAS  Google Scholar 

  • Yano K, Yamasaki M, Yoshida M, Matsuda Y, Yamaguchi K (1995) RES-701-2, a novel and selective endothelin type B receptor antagonist produced by Streptomyces sp. II. Determination of the primary structure. J Antibiot 48(11):1368–1370

    Article  PubMed  CAS  Google Scholar 

  • Yano K, Toki S, Nakanishi S, Ochiai K, Ando K, Yoshida M, Matsuda Y, Yamasaki M (1996) MS-271, a novel inhibitor of calmodulin-activated myosin light chain kinase from Streptomyces sp.-I. Isolation, structural determination and biological properties of MS-271. Bioorg Med Chem 4(1):115–120

    Article  PubMed  CAS  Google Scholar 

  • Zhang K, Han W, Zhang R, Xu X, Pan Q, Hu X (2007) Phenylobacterium zucineum sp. nov., a facultative intracellular bacterium isolated from a human erythroleukemia cell line K562. Syst Appl Microbiol 30(3):207–212. doi:10.1016/j.syapm.2006.07.002

    Article  PubMed  Google Scholar 

  • Zimmermann M, Hegemann JD, Xie X, Marahiel MA (2013) The astexin-1 lasso peptides: biosynthesis, stability, and structural studies. Chem Biol 20(4):558–569. doi:10.1016/j.chembiol.2013.03.013

    Article  PubMed  CAS  Google Scholar 

  • Zirah S, Afonso C, Linne U, Knappe TA, Marahiel MA, Rebuffat S, Tabet JC (2011) Topoisomer differentiation of molecular knots by FTICR MS: lessons from class II lasso peptides J Am Soc Mass Spectrom 22(3):467–479

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yanyan Li .

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Yanyan Li, Séverine Zirah and Sylvie Rebuffat

About this chapter

Cite this chapter

Li, Y., Zirah, S., Rebuffat, S. (2015). From the Producer Microorganisms to the Lasso Scaffold. In: Lasso Peptides. SpringerBriefs in Microbiology. Springer, New York, NY. https://doi.org/10.1007/978-1-4939-1010-6_2

Download citation

Publish with us

Policies and ethics