Skip to main content

G Protein-Coupled Receptor Accessory Proteins and Signaling: Pharmacogenomic Insights

  • Protocol
  • First Online:
Pharmacogenomics in Drug Discovery and Development

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1175))

Abstract

The identification and characterization of the genes encoding G protein-coupled receptors (GPCRs) and the proteins necessary for the processes of ligand binding, GPCR activation, inactivation, and receptor trafficking to the membrane are discussed in the context of human genetic disease. In addition to functional GPCR variants, the identification of genetic disruptions affecting proteins necessary to GPCR functions have provided insights into the function of these pathways. Gsα and Gβ subunit polymorphisms have been found to result in complex phenotypes. Disruptions in accessory proteins that normally modify or organize heterotrimeric G-protein coupling may also result in disease states. These include the contribution of variants of the regulator of G protein signaling (RGS) protein to hypertension; the role variants of the activator of G protein signaling (AGS) proteins to phenotypes (such as the type III AGS8 variant to hypoxia); the contribution of G protein-coupled receptor kinase (GRK) proteins, such as GRK4, in disorders such as hypertension. The role of accessory proteins in GPCR structure and function is discussed in the context of genetic disorders associated with disruption of the genes that encode them. An understanding of the pharmacogenomics of GPCR and accessory protein signaling provides the basis for examining both GPCR pharmacogenetics and the genetics of monogenic disorders that result from disruption of given receptor systems.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Spiegel AM, Weinstein LS (2004) Inherited diseases involving g proteins and G protein-coupled receptors. Annu Rev Med 55:27–39

    CAS  PubMed  Google Scholar 

  2. Pierce KL, Premont RT, Lefkowitz RJ (2002) Seven-transmembrane receptors. Nat Rev Mol Cell Biol 3:639–650

    CAS  PubMed  Google Scholar 

  3. Thompson MD, Cole DE, Jose P (2008) The pharmacogenomics of G protein-coupled receptor signaling. Methods Mol Biol 448:77–108

    CAS  PubMed  Google Scholar 

  4. Libert F, Vassart G, Parmentier M (1991) Current developments in G-protein-coupled receptors. Curr Opin Cell Biol 3:218–223

    CAS  PubMed  Google Scholar 

  5. Civelli O, Reinscheid RK, Zhang Y et al (2013) G protein-coupled receptor deorphanizations. Annu Rev Pharmacol Toxicol 53:127–146

    CAS  PubMed  Google Scholar 

  6. Thompson MD, Capra V, Takasaki J et al (2007) A functional G300S variant of the cysteinyl leukotriene 1 receptor is associated with atopy in a Tristan da Cunha isolate. Pharmacogenet Genomics 17:539–549

    CAS  PubMed  Google Scholar 

  7. Liu X, Davis D, Segaloff DL (1993) Disruption of potential sites for N-linked glycosylation does not impair hormone binding to the lutropin/choriogonadotropin receptor if Asn-173 is left intact. J Biol Chem 268:1513–1516

    CAS  PubMed  Google Scholar 

  8. Karpa KD, Lidow MS, Pickering MT et al (1999) N-linked glycosylation is required for plasma membrane localization of D5, but not D1, dopamine receptors in transfected mammalian cells. Mol Pharmacol 56:1071–1078

    CAS  PubMed  Google Scholar 

  9. Karnik SS, Ridge KD, Bhattacharya S et al (1993) Palmitoylation of bovine opsin and its cysteine mutants in COS cells. Proc Natl Acad Sci U S A 90:40–44

    CAS  PubMed Central  PubMed  Google Scholar 

  10. Ovchinnikov Y, Abdulaev N, Bogachuk A (1988) Two adjacent cysteine residues in the C-terminal cytoplasmic fragment of bovine rhodopsin are palmitoylated. FEBS Lett 230:1–5

    CAS  PubMed  Google Scholar 

  11. Unger VM, Hargrave PA, Baldwin JM et al (1997) Arrangement of rhodopsin transmembrane alpha-helices. Nature 389:203–206

    CAS  PubMed  Google Scholar 

  12. Palczewski K, Kumasaka T, Hori T et al (2000) Crystal structure of rhodopsin: a G protein-coupled receptor. Science 289:739–745

    CAS  PubMed  Google Scholar 

  13. Dohlman HG, Thorner J, Caron MG et al (1991) Model systems for the study of seven-transmembrane-segment receptors. Annu Rev Biochem 60:653–688

    CAS  PubMed  Google Scholar 

  14. Hibert MF, Trumpp-Kallmeyer S, Hoflack J et al (1993) This is not a G protein-coupled receptor. Trends Pharmacol Sci 14:7–12

    CAS  PubMed  Google Scholar 

  15. Strader CD, Fong TM, Tota MR et al (1994) Structure and function of G protein-coupled receptors. Annu Rev Biochem 63:101–132

    CAS  PubMed  Google Scholar 

  16. Rana BK, Shiina T, Insel PA (2001) Genetic variations and polymorphisms of G protein-coupled receptors: functional and therapeutic implications. Annu Rev Pharmacol Toxicol 41:593–624

    CAS  PubMed  Google Scholar 

  17. Thompson MD, Siminovitch KA, Cole DE (2008) G Protein-coupled receptor pharmacogenetics. Methods Mol Biol 448:139–185

    CAS  PubMed  Google Scholar 

  18. Neves SR, Iyengar R (2002) Modeling of signaling networks. Bioessays 24:1110–1117

    CAS  PubMed  Google Scholar 

  19. Lynch KR, O’Neill GP, Liu QY et al (1999) Characterization of the human cysteinyl leukotriene CysLT(1) receptor. Nature 399:789–793

    CAS  PubMed  Google Scholar 

  20. Heise CE, O’Dowd BF, Figueroa DJ et al (2000) Characterization of the human cysteinyl leukotriene 2 receptor. J Biol Chem 275:30531–30536

    CAS  PubMed  Google Scholar 

  21. Figueroa DJ, Breyer RM, Defoe SK et al (2001) Expression of the cysteinyl leukotriene 1 receptor in normal human lung and peripheral blood leukocytes. Am J Respir Crit Care Med 163:226–233

    CAS  PubMed  Google Scholar 

  22. Mellor EA, Frank N, Soler D et al (2003) Expression of the type 2 receptor for cysteinyl leukotrienes (CysLT2R) by human mast cells: functional distinction from CysLT1R. Proc Natl Acad Sci U S A 100:11589–11593

    CAS  PubMed Central  PubMed  Google Scholar 

  23. Sjostrom M, Johansson AS, Schroder O et al (2003) Dominant expression of the CysLT(2) receptor accounts for calcium signaling by cysteinyl leukotrienes in human umbilical vein endothelial cells. Arterioscler Thromb Vasc Biol 23:E37–E41

    PubMed  Google Scholar 

  24. Milligan G (2004) G protein-coupled receptor dimerization: function and ligand pharmacology. Mol Pharmacol 66:1–7

    CAS  PubMed  Google Scholar 

  25. Gomes I, Jordan BA, Gupta A et al (2001) G protein coupled receptor dimerization: implications in modulating receptor function. J Mol Med 79:226–242

    CAS  PubMed  Google Scholar 

  26. AbdAlla S, Lother H, Quitterer U (2000) AT(1)-receptor heterodimers show enhanced G-protein activation and altered receptor sequestration. Nature 407:94–98

    CAS  PubMed  Google Scholar 

  27. AbdAlla S, Lother H, Langer A, el Faramawy Y, Quitterer U (2004) Factor XIIIA transglutaminase crosslinks AT(1) receptor dimers of monocytes at the onset of atherosclerosis. Cell 119:343–354

    CAS  PubMed  Google Scholar 

  28. Zeng FY, Wess J (1999) Identification and molecular characterization of m3 muscarinic receptor dimers. J Biol Chem 274:19487–19497

    CAS  PubMed  Google Scholar 

  29. George SR, Lee SP, Varghese G et al (1998) A transmembrane domain-derived peptide inhibits D1 dopamine receptor function without affecting receptor oligomerization. J Biol Chem 273:30244–30248

    CAS  PubMed  Google Scholar 

  30. Lee SP, O’Dowd BF, Rajaram RD et al (2003) D2 dopamine receptor homodimerization is mediated by multiple sites of interaction, including an intermolecular interaction involving transmembrane domain 4. Biochemistry 42:11023–11031

    CAS  PubMed  Google Scholar 

  31. Romano C, Yang WL, O’Malley KL (1996) Metabotropic glutamate receptor 5 is a disulfide-linked dimer. J Biol Chem 271:28612–28616

    CAS  PubMed  Google Scholar 

  32. Karnik SS, Sakmar TP, Chen HB et al (1988) Cysteine residues 110 and 187 are essential for the formation of correct structure in bovine rhodopsin. Proc Natl Acad Sci U S A 85:8459–8463

    CAS  PubMed Central  PubMed  Google Scholar 

  33. Savarese TM, Wang CD, Fraser CM (1992) Site-directed mutagenesis of the rat m1 muscarinic acetylcholine receptor. Role of conserved cysteines in receptor function. J Biol Chem 267:11439–11448

    CAS  PubMed  Google Scholar 

  34. Zhang P, Johnson PS, Zollner C et al (1999) Mutation of human mu opioid receptor extracellular “disulfide cysteine” residues alters ligand binding but does not prevent receptor targeting to the cell plasma membrane. Brain Res Mol Brain Res 72:195–204

    CAS  PubMed  Google Scholar 

  35. Capra V, Thompson MD, Cole DE et al (2007) Cysteinyl-leukotrienes and their receptors in health and disease. Med Res Rev 27:469–527

    CAS  PubMed  Google Scholar 

  36. Thompson MD, Takasaki J, Capra V et al (2006) G protein-coupled receptors and asthma endophenotypes: the cysteinyl leukotriene system in perspective. Mol Diagn Ther 10:353–366

    CAS  PubMed  Google Scholar 

  37. Thompson MD, Comings DE, Abu-Ghazalah R et al (2004) Variants of the orexin2/hcrt2 receptor gene identified in patients with excessive daytime sleepiness and patients with Tourette’s syndrome comorbidity. Am J Med Genet B Neuropsychiatr Genet 129B:69–75

    PubMed  Google Scholar 

  38. Thompson MD, Burnham WM, Cole DEC (2005) The G protein-coupled receptors: pharmacogenetics and disease. Crit Rev Clin Lab Sci 42:311–392

    CAS  PubMed  Google Scholar 

  39. Gainetdinov RR, Premont RT, Bohn LM et al (2004) Desensitization of G protein-coupled receptors and neuronal functions. Annu Rev Neurosci 27:107–144

    CAS  PubMed  Google Scholar 

  40. Weinstein LS, Chen M, Xie T et al (2006) Genetic diseases associated with heterotrimeric G proteins. Trends Pharmacol Sci 27:260–266

    CAS  PubMed  Google Scholar 

  41. Szabo V, Kreienkamp HJ, Rosenberg T et al (2007) p.Gln200Glu, a putative constitutively active mutant of rod alpha-transducin (GNAT1) in autosomal dominant congenital stationary night blindness. Hum Mutat 28:741–742

    PubMed  Google Scholar 

  42. Naeem MA, Chavali VR, Ali S et al (2012) GNAT1 associated with autosomal recessive congenital stationary night blindness. Invest Ophthalmol Vis Sci 53:1353–1361

    CAS  PubMed Central  PubMed  Google Scholar 

  43. Ouechtati F, Merdassi A, Bouyacoub Y et al (2011) Clinical and genetic investigation of a large Tunisian family with complete achromatopsia: identification of a new nonsense mutation in GNAT2 gene. J Hum Genet 56:22–28

    PubMed  Google Scholar 

  44. Rosenberg T, Baumann B, Kohl S et al (2004) Variant phenotypes of incomplete achromatopsia in two cousins with GNAT2 gene mutations. Invest Ophthalmol Vis Sci 45:4256–4262

    PubMed  Google Scholar 

  45. Goldlust IS, Hermetz KE, Catalano LM et al (2013) Mouse model implicates GNB3 duplication in a childhood obesity syndrome. Proc Natl Acad Sci U S A 110:14990–14994

    CAS  PubMed Central  PubMed  Google Scholar 

  46. Klenke S, Kussmann M, Siffert W (2011) The GNB3 C825T polymorphism as a pharmacogenetic marker in the treatment of hypertension, obesity, and depression. Pharmacogenet Genomics 21:594–606

    CAS  PubMed  Google Scholar 

  47. Tang H, Wei P, Duell EJ et al (2014) Genes-environment interactions in obesity- and diabetes-associated pancreatic cancer: a GWAS data analysis. Cancer Epidemiol Biomarkers Prev 23(1):98–106

    CAS  PubMed  Google Scholar 

  48. Elli FM, deSanctis L, Ceoloni B et al (2013) Pseudohypoparathyroidism type Ia and pseudo-pseudohypoparathyroidism: the growing spectrum of GNAS inactivating mutations. Hum Mutat 34:411–416

    CAS  PubMed  Google Scholar 

  49. Iiri T, Herzmark P, Nakamoto JM et al (1994) Rapid GDP release from Gs alpha in patients with gain and loss of endocrine function. Nature 371:164–168

    CAS  PubMed  Google Scholar 

  50. Thompson MD, Percy ME, Burnham WM et al (2008) G Protein-coupled receptors disrupted in human genetic disease. Methods Mol Biol 448:109–138

    CAS  PubMed  Google Scholar 

  51. Wensel T (1999) Introduction to cellular signal transduction. In: Sitaramayya A (ed) Heterotrimeric G-proteins: structure, regulation and signaling mechanisms. Introductory signal transduction. Birkhanser, Boston, MA, pp 29–46

    Google Scholar 

  52. Spiegel AM (1996) Defects in G protein-coupled signal transduction in human disease. Annu Rev Physiol 58:143–170

    CAS  PubMed  Google Scholar 

  53. Sunahara RK, Dessauer CW et al (1996) Complexity and diversity of mammalian adenylyl cyclases. Annu Rev Pharmacol Toxicol 36:461–480

    CAS  PubMed  Google Scholar 

  54. Tang CM, Insel PA (2005) Genetic variation in G-protein-coupled receptors—consequences for G-protein-coupled receptors as drug targets. Expert Opin Ther Targets 9:1247–1265

    CAS  PubMed  Google Scholar 

  55. Rebois RV, Hebert TE (2003) Protein complexes involved in heptahelical receptor-mediated signal transduction. Receptors Channels 9:169–194

    CAS  PubMed  Google Scholar 

  56. Chidiac P (1998) Rethinking receptor-G protein-effector interactions. Biochem Pharmacol 55:549–556

    CAS  PubMed  Google Scholar 

  57. Logothetis DE, Kurachi Y, Galper J et al (1987) The beta gamma subunits of GTP-binding proteins activate the muscarinic K+ channel in heart. Nature 325:321–326

    CAS  PubMed  Google Scholar 

  58. Smrcka AV (2008) G protein βγ subunits: central mediators of G protein-coupled receptor signaling. Cell Mol Life Sci 65:2191–2214

    CAS  PubMed Central  PubMed  Google Scholar 

  59. Witherow DS, Slepak VZ (2003) A novel kind of G protein heterodimer: the G beta5-RGS complex. Receptors Channels 9:205–212

    CAS  PubMed  Google Scholar 

  60. Premont RT, Inglese J, Lefkowitz RJ (1995) Protein kinases that phosphorylate activated G protein-coupled receptors. FASEB J 9:175–182

    CAS  PubMed  Google Scholar 

  61. Ray K, Kunsch C, Bonner LM et al (1995) Isolation of cDNA clones encoding eight different human G protein gamma subunits, including three novel forms designated the gamma 4, gamma 10, and gamma 11 subunits. J Biol Chem 270:21765–21771

    CAS  PubMed  Google Scholar 

  62. Hepler JR, Gilman AG (1992) G-proteins. Trends Biochem Sci 17:383–387

    CAS  PubMed  Google Scholar 

  63. Siffert W, Rosskopf D, Siffert G et al (1998) Association of a human G-protein beta3 subunit variant with hypertension. Nat Genet 18:45–48

    CAS  PubMed  Google Scholar 

  64. Sun A, Ge J, Siffert W, Frey UH (2005) Quantification of allele-specific G-protein beta3 subunit mRNA transcripts in different human cells and tissues by Pyrosequencing. Eur J Hum Genet 13:361–369

    CAS  PubMed  Google Scholar 

  65. Siffert W (2001) Molecular genetics of G proteins and atherosclerosis risk. Basic Res Cardiol 96:606–611

    CAS  PubMed  Google Scholar 

  66. Mitchell A, Pace M, Nurnberger J et al (2005) Insulin-mediated venodilation is impaired in young, healthy carriers of the 825T allele of the G-protein beta3 subunit gene (GNB3). Clin Pharmacol Ther 77:495–502

    CAS  PubMed  Google Scholar 

  67. Matsunaga T, Nagasumi K, Yamamura T et al (2005) Association of C825T polymorphism of G protein beta3 subunit with the autonomic nervous system in young healthy Japanese individuals. Am J Hypertens 18:523–529

    CAS  PubMed  Google Scholar 

  68. Kiani JG, Saeed M, Parvez SH et al (2005) Association of G-protein beta-3 subunit gene (GNB3) T825 allele with type II diabetes. Neuro Endocrinol Lett 26:87–88

    CAS  PubMed  Google Scholar 

  69. Fernandez-Real JM, Penarroja G, Richart C et al (2003) G protein beta3 gene variant, vascular function, and insulin sensitivity in type 2 diabetes. Hypertension 41:124–129

    CAS  PubMed  Google Scholar 

  70. Terra SG, McGorray SP, Wu R et al (2005) Association between beta-adrenergic receptor polymorphisms and their G-protein-coupled receptors with body mass index and obesity in women: a report from the NHLBI-sponsored WISE study. Int J Obes (Lond) 29:746–754

    CAS  Google Scholar 

  71. Andersen G, Overgaard J, Albrechtsen A et al (2006) Studies of the association of the GNB3 825C > T polymorphism with components of the metabolic syndrome in white Danes. Diabetologia 49:75–82

    CAS  PubMed  Google Scholar 

  72. Meirhaeghe A, Cottel D, Amouyel P et al (2005) Lack of association between certain candidate gene polymorphisms and the metabolic syndrome. Mol Genet Metab 86:293–299

    CAS  PubMed  Google Scholar 

  73. Bullido MJ, Ramos MC, Ruiz-Gomez A et al (2004) Polymorphism in genes involved in adrenergic signaling associated with Alzheimer’s. Neurobiol Aging 25:853–859

    CAS  PubMed  Google Scholar 

  74. Klintschar M, Stiller D, Schwaiger P et al (2005) DNA polymorphisms in the tyrosine hydroxylase and GNB3 genes: association with unexpected death from acute myocardial infarction and increased heart weight. Forensic Sci Int 153:142–146

    CAS  PubMed  Google Scholar 

  75. Eisenhardt A, Siffert W, Rosskopf D et al (2005) Association study of the G-protein beta3 subunit C825T polymorphism with disease progression in patients with bladder cancer. World J Urol 23:279–286

    CAS  PubMed  Google Scholar 

  76. Sheu SY, Gorges R, Ensinger C et al (2005) Different genotype distribution of the GNB3 C825T polymorphism of the G protein beta3 subunit in adenomas and differentiated thyroid carcinomas of follicular cell origin. J Pathol 207:430–435

    CAS  PubMed  Google Scholar 

  77. Sarrazin C, Berg T, Weich V et al (2005) GNB3 C825T polymorphism and response to interferon-alfa/ribavirin treatment in patients with hepatitis C virus genotype 1 (HCV-1) infection. J Hepatol 43:388–393

    CAS  PubMed  Google Scholar 

  78. Lee HJ, Cha JH, Ham BJ et al (2004) Association between a G-protein beta 3 subunit gene polymorphism and the symptomatology and treatment responses of major depressive disorders. Pharmacogenomics J 4:29–33

    CAS  PubMed  Google Scholar 

  79. Muller DJ, De Luca V, Sicard T et al (2005) Suggestive association between the C825T polymorphism of the G-protein beta3 subunit gene (GNB3) and clinical improvement with antipsychotics in schizophrenia. Eur Neuropsychopharmacol 15:525–531

    PubMed  Google Scholar 

  80. Schelleman H, Stricker BH, Verschuren WM et al (2006) Interactions between five candidate genes and antihypertensive drug therapy on blood pressure. Pharmacogenomics J 6:22–26

    CAS  PubMed  Google Scholar 

  81. Muller S, Lohse MJ (1995) The role of G-protein beta gamma subunits in signal transduction. Biochem Soc Trans 23:141–148

    CAS  PubMed  Google Scholar 

  82. Tang WJ, Gilman AG (1991) Type-specific regulation of adenylyl cyclase by G protein beta gamma subunits. Science 254:1500–1503

    CAS  PubMed  Google Scholar 

  83. Ueda N, Iniguez-Lluhi JA, Lee E et al (1994) G protein beta gamma subunits. Simplified purification and properties of novel isoforms. J Biol Chem 269:4388–4395

    CAS  PubMed  Google Scholar 

  84. Boyer JL, Graber SG, Waldo GL et al (1994) Selective activation of phospholipase C by recombinant G-protein alpha- and beta gamma-subunits. J Biol Chem 269:2814–2819

    CAS  PubMed  Google Scholar 

  85. Carty DJ, Padrell E, Codina J et al (1990) Distinct guanine nucleotide binding and release properties of the three Gi proteins. J Biol Chem 265:6268–6273

    CAS  PubMed  Google Scholar 

  86. Bourne HR, Stryer L (1992) G proteins. The target sets the tempo. Nature 358:541–543

    CAS  PubMed  Google Scholar 

  87. Abramow-Newerly M, Roy AA, Nunn C et al (2006) RGS proteins have a signalling complex: interactions between RGS proteins and GPCRs, effectors, and auxiliary proteins. Cell Signal 18:579–591

    CAS  PubMed  Google Scholar 

  88. Hubbard KB, Hepler JR (2006) Cell signalling diversity of the Gqα family of heterotrimeric G proteins. Cell Signal 18:135–150

    CAS  PubMed  Google Scholar 

  89. Jiang LI, Collins J, Davis R et al (2008) Regulation of cAMP responses by the G12/13 pathway converges on adenylyl cyclase VII. J Biol Chem 283:23429–23439

    CAS  PubMed Central  PubMed  Google Scholar 

  90. Tanabe S, Kreutz B, Suzuki N et al (2004) Regulation of RGS-RhoGEFs by G alpha 12 and G alpha 13 proteins. Methods Enzymol 390:285–294

    CAS  PubMed  Google Scholar 

  91. Milligan G, Kostenis E (2006) Heterotrimeric G-proteins: a short history. Br J Pharmacol 147:S46–S55

    CAS  PubMed Central  PubMed  Google Scholar 

  92. Weinstein LS, Xie T, Qasem A et al (2010) The role of GNAS and other imprinted genes in the development of obesity. Int J Obes (Lond) 34:6–17

    CAS  Google Scholar 

  93. Shenker A, Weinstein LS, Sweet DE et al (1994) An activating Gs alpha mutation is present in fibrous dysplasia of bone in the McCune-Albright syndrome. J Clin Endocrinol Metab 79:750–755

    CAS  PubMed  Google Scholar 

  94. Fragoso MC, Domenice S, Latronico AC et al (2003) Cushing’s syndrome secondary to adrenocorticotropin-independent macronodular adrenocortical hyperplasia due to activating mutations of GNAS1 gene. J Clin Endocrinol Metab 88:2147–2151

    CAS  PubMed  Google Scholar 

  95. Roman R, Johnson MC, Codner E et al (2004) Activating GNAS1 gene mutations in patients with premature thelarche. J Pediatr 145:218–222

    CAS  PubMed  Google Scholar 

  96. Spiegel AM (1990) Albright’s hereditary osteodystrophy and defective G proteins. N Engl J Med 322:1461–1462

    CAS  PubMed  Google Scholar 

  97. Weinstein LS, Yu S, Warner DR et al (2001) Endocrine manifestations of stimulatory G protein alpha-subunit mutations and the role of genomic imprinting. Endocr Rev 22:675–705

    CAS  PubMed  Google Scholar 

  98. Bastepe M, Weinstein LS, Ogata N et al (2004) Stimulatory G protein directly regulates hypertrophic differentiation of growth plate cartilage in vivo. Proc Natl Acad Sci U S A101:14794–14799

    CAS  PubMed Central  PubMed  Google Scholar 

  99. Sakamoto A, Chen M, Kobayashi T et al (2005) Chondrocyte-specific knockout of the G protein G(s)alpha leads to epiphyseal and growth plate abnormalities and ectopic chondrocyte formation. J Bone Miner Res 20:663–671

    CAS  PubMed  Google Scholar 

  100. Germain-Lee EL, Groman J, Crane JL, Jan de Beur SM, Levine MA (2003) Growth hormone deficiency in pseudohypoparathyroidism type 1a: another manifestation of multihormone resistance. J Clin Endocrinol Metab 88:4059–4069

    CAS  PubMed  Google Scholar 

  101. Mantovani G, Maghnie M, Weber G et al (2003) Growth hormone-releasing hormone resistance in pseudohypoparathyroidism type Ia: new evidence for imprinting of the Gs alpha gene. J Clin Endocrinol Metab 88:4070–4074

    CAS  PubMed  Google Scholar 

  102. Yu S, Yu D, Lee E et al (1998) Variable and tissue-specific hormone resistance in heterotrimeric Gs protein alpha-subunit (Gsalpha) knockout mice is due to tissue-specific imprinting of the gsalpha gene. Proc Natl Acad Sci U S A 95:8715–8720

    CAS  PubMed Central  PubMed  Google Scholar 

  103. Hayward BE, Barlier A, Korbonits M et al (2001) Imprinting of the G(s)alpha gene GNAS1 in the pathogenesis of acromegaly. J Clin Invest 107:R31–R36

    CAS  PubMed Central  PubMed  Google Scholar 

  104. Mantovani G, Ballare E, Giammona E et al (2002) The gsalpha gene: predominant maternal origin of transcription in human thyroid gland and gonads. J Clin Endocrinol Metab 87:4736–4740

    CAS  PubMed  Google Scholar 

  105. Germain-Lee EL, Ding CL, Deng Z et al (2002) Paternal imprinting of Galpha(s) in the human thyroid as the basis of TSH resistance in pseudohypoparathyroidism type 1a. Biochem Biophys Res Commun 296:67–72

    CAS  PubMed  Google Scholar 

  106. Liu J, Erlichman B, Weinstein LS (2003) The stimulatory G protein alpha-subunit Gs alpha is imprinted in human thyroid glands: implications for thyroid function in pseudohypoparathyroidism types 1A and 1B. J Clin Endocrinol Metab 88:4336–4341

    CAS  PubMed  Google Scholar 

  107. Bastepe M, Frohlich LF, Linglart A et al (2005) Deletion of the NESP55 differentially methylated region causes loss of maternal GNAS imprints and pseudohypoparathyroidism type Ib. Nat Genet 37:25–27

    CAS  PubMed  Google Scholar 

  108. Bastepe M, Lane AH, Juppner H (2001) Paternal uniparental isodisomy of chromosome 20q—and the resulting changes in GNAS1 methylation—as a plausible cause of pseudohypoparathyroidism. Am J Hum Genet 68:1283–1289

    CAS  PubMed Central  PubMed  Google Scholar 

  109. Wu WI, Schwindinger WF, Aparicio LF et al (2001) Selective resistance to parathyroid hormone caused by a novel uncoupling mutation in the carboxyl terminus of G alpha(s). A cause of pseudohypoparathyroidism type Ib. J Biol Chem 276:165–171

    CAS  PubMed  Google Scholar 

  110. Cismowski MJ (2006) Non-receptor activators of heterotrimeric G-protein signaling (AGS proteins). Semin Cell Dev Biol 17:334–344

    CAS  PubMed  Google Scholar 

  111. Sato M, Cismowski MJ, Toyota E et al (2006) Identification of a receptor-independent activator of G protein signaling (AGS8) in ischemic heart and its interaction with Gbetagamma. Proc Natl Acad Sci U S A 103:797–802

    CAS  PubMed Central  PubMed  Google Scholar 

  112. De Vries L, Zheng B, Fischer T et al (2000) The regulator of G protein signaling family. Annu Rev Pharmacol Toxicol 40:235–271

    PubMed  Google Scholar 

  113. Hepler JR (2003) RGS protein and G protein interactions: a little help from their friends. Mol Pharmacol 64:547–549

    CAS  PubMed  Google Scholar 

  114. Roy AA, Lemberg KE, Chidiac P (2003) Recruitment of RGS2 and RGS4 to the plasma membrane by G proteins and receptors reflects functional interactions. Mol Pharmacol 64:587–593

    CAS  PubMed  Google Scholar 

  115. Riddle EL, Rana BK, Murthy KK et al (2006) Polymorphisms and haplotypes of the regulator of G protein signaling-2 gene in normotensives and hypertensives. Hypertension 47:415–420

    CAS  PubMed  Google Scholar 

  116. Chidiac P, Roy AA (2003) Activity, regulation, and intracellular localization of RGS proteins. Receptors Channels 9:135–147

    CAS  PubMed  Google Scholar 

  117. Bernstein LS, Ramineni S, Hague C et al (2004) RGS2 binds directly and selectively to the M1 muscarinic acetylcholine receptor third intracellular loop to modulate G(q/11 alpha) signaling. J Biol Chem 279:21248–21256

    CAS  PubMed  Google Scholar 

  118. Blumer JB, Smrcka AV, Lanier SM (2007) Mechanistic pathways and biological roles for receptor-independent activators of G-protein signaling. Pharmacol Ther 113:488–506

    CAS  PubMed Central  PubMed  Google Scholar 

  119. Zhao P, Cladman W, Van Tol HH et al (2013) Fine-tuning of GPCR signals by intracellular G protein modulators. Prog Mol Biol Transl Sci 115:421–453

    CAS  PubMed  Google Scholar 

  120. Xie Z, Liu D, Liu S et al (2011) Identification of a cAMP-response element in the regulator of G-protein signaling-2 (RGS2) promoter as a key cis-regulatory element for RGS2 transcriptional regulation by angiotensin II in cultured vascular smooth muscles. J Biol Chem 286:44646–44658

    CAS  PubMed Central  PubMed  Google Scholar 

  121. Chidiac P, Ross EM (1999) Phospholipase C-beta1 directly accelerates GTP hydrolysis by Galphaq and acceleration is inhibited by Gbeta gamma subunits. J Biol Chem 274:19639–19643

    CAS  PubMed  Google Scholar 

  122. Siehler S (2009) Regulation of RhoGEF proteins by G12/13-coupled receptors. Br J Pharmacol 158:41–49

    CAS  PubMed Central  PubMed  Google Scholar 

  123. Berman DM, Gilman AG (1998) Mammalian RGS proteins: barbarians at the gate. J Biol Chem 273:1269–1272

    CAS  PubMed  Google Scholar 

  124. Tsang S, Woo AY, Zhu W et al (2010) Deregulation of RGS2 in cardiovascular diseases. Front Biosci (Schol Ed) 2:547–557

    Google Scholar 

  125. Manzur M, Ganss R (2009) Regulator of G protein signaling 5: a new player in vascular remodeling. Trends Cardiovasc Med 19:26–30

    CAS  PubMed  Google Scholar 

  126. Gu S, Cifelli C, Wang S et al (2009) RGS proteins: identifying new GAPs in the understanding of blood pressure regulation and cardiovascular function. Clin Sci (Lond) 116:391–399

    CAS  Google Scholar 

  127. Doggrell SA (2004) Is RGS-2 a new drug development target in cardiovascular disease? Expert Opin Ther Targets 8:355–358

    CAS  PubMed  Google Scholar 

  128. Heximer SP, Knutsen RH, Sun X et al (2003) Hypertension and prolonged vasoconstrictor signaling in RGS2-deficient mice. J Clin Invest 111:1259

    CAS  PubMed  Google Scholar 

  129. Sun X, Kaltenbronn KM, Steinberg TH et al (2005) RGS2 is a mediator of nitric oxide action on blood pressure and vasoconstrictor signaling. Mol Pharmacol 67:631–639

    CAS  PubMed  Google Scholar 

  130. Tiret L, Bonnardeaux A, Poirier O et al (1994) Synergistic effects of angiotensin-converting enzyme and angiotensin-II type-1 receptor gene polymorphisms on risk of myocardial-infarction. Lancet 344:910–913

    CAS  PubMed  Google Scholar 

  131. Takami S, Katsuya T, Rakugi H et al (1998) Angiotensin II type 1 receptor gene polymorphism is associated with increase of left ventricular mass but not with hypertension. Am J Hypertens 11:316–321

    CAS  PubMed  Google Scholar 

  132. Calo LA, Pagnin E, Davis PA et al (2004) Increased expression of regulator of G protein signaling-2 (RGS-2) in Bartter’s/Gitelman’s syndrome. A role in the control of vascular tone and implication for hypertension. J Clin Endocrinol Metab 89:4153–4157

    CAS  PubMed  Google Scholar 

  133. Gao Y, Portugal AD, Negash S et al (2007) Role of Rho kinases in PKG-mediated relaxation of pulmonary arteries of fetal lambs exposed to chronic high altitude hypoxia. Am J Physiol Lung Cell Mol Physiol 292:L678–L684

    CAS  PubMed  Google Scholar 

  134. Riddle EL, Schwartzman RA, Bond M et al (2005) Multi-tasking RGS proteins in the heart: the next therapeutic target? Circ Res 96:401–411

    CAS  PubMed  Google Scholar 

  135. Semplicini A, Lenzini L, Sartori M et al (2006) Reduced expression of regulator of G-protein signaling 2 (RGS2) in hypertensive patients increases calcium mobilization and ERK1/2 phosphorylation induced by angiotensin II. J Hypertens 24:1115–1124

    CAS  PubMed  Google Scholar 

  136. Salomon Y, Londos C, Rodbell M (1974) A highly sensitive adenylate cyclase assay. Anal Biochem 58:541–548

    CAS  PubMed  Google Scholar 

  137. Lamey M, Thompson M, Varghese G et al (2002) Distinct residues in the carboxyl tail mediate agonist-induced desensitization and internalization of the human dopamine D-1 receptor. J Biol Chem 277:9415–9421

    CAS  PubMed  Google Scholar 

  138. Krupnick JG, Benovic JL (1998) The role of receptor kinases and arrestins in G protein-coupled receptor regulation. Annu Rev Pharmacol Toxicol 38:289–319

    CAS  PubMed  Google Scholar 

  139. Zhao X, Palczewski K, Ohguro H (1995) Mechanism of rhodopsin phosphorylation. Biophys Chem 56:183–188

    CAS  PubMed  Google Scholar 

  140. Jiang D, Sibley DR (1999) Regulation of D(1) dopamine receptors with mutations of protein kinase phosphorylation sites: attenuation of the rate of agonist-induced desensitization. Mol Pharmacol 56:675–683

    CAS  PubMed  Google Scholar 

  141. Hausdorff WP, Bouvier M, O’Dowd BF et al (1989) Phosphorylation sites on two domains of the beta 2-adrenergic receptor are involved in distinct pathways of receptor desensitization. J Biol Chem 264:12657–12665

    CAS  PubMed  Google Scholar 

  142. Lohse MJ, Benovic JL, Caron MG et al (1990) Multiple pathways of rapid beta 2-adrenergic receptor desensitization. Delineation with specific inhibitors. J Biol Chem 265:3202–3211

    CAS  PubMed  Google Scholar 

  143. Lohse MJ (1993) Molecular mechanisms of membrane receptor desensitization. Biochim Biophys Acta 1179:171–188

    CAS  PubMed  Google Scholar 

  144. Lewis MM, Watts VJ, Lawler CP et al (1998) Homologous desensitization of the D1A dopamine receptor: efficacy in causing desensitization dissociates from both receptor occupancy and functional potency. J Pharmacol Exp Ther 286:345–353

    CAS  PubMed  Google Scholar 

  145. Shih M, Malbon CC (1994) Oligodeoxynucleotides antisense to mRNA encoding protein kinase A, protein kinase C, and beta-adrenergic receptor kinase reveal distinctive cell-type-specific roles in agonist-induced desensitization. Proc Natl Acad Sci U S A 91:12193–12197

    CAS  PubMed Central  PubMed  Google Scholar 

  146. Roth NS, Campbell PT, Caron MG et al (1991) Comparative rates of desensitization of beta-adrenergic receptors by the beta-adrenergic receptor kinase and the cyclic AMP-dependent protein kinase. Proc Natl Acad Sci U S A 88:6201–6204

    CAS  PubMed Central  PubMed  Google Scholar 

  147. Eason MG, Moreira SP, Liggett SB (1995) Four consecutive serines in the third intracellular loop are the sites for beta-adrenergic receptor kinase-mediated phosphorylation and desensitization of the alpha 2A-adrenergic receptor. J Biol Chem 270:4681–4688

    CAS  PubMed  Google Scholar 

  148. Diviani D, Lattion AL, Cotecchia S (1997) Characterization of the phosphorylation sites involved in G protein-coupled receptor kinase and protein kinase C-mediated desensitization of the alpha1B-adrenergic receptor. J Biol Chem 272:28712–28719

    CAS  PubMed  Google Scholar 

  149. Maestes DC, Potter RM, Prossnitz ER (1999) Differential phosphorylation paradigms dictate desensitization and internalization of the N-formyl peptide receptor. J Biol Chem 274:29791–29795

    CAS  PubMed  Google Scholar 

  150. Tsuga H, Kameyama K, Haga T et al (1998) Internalization and down-regulation of human muscarinic acetylcholine receptor m2 subtypes. Role of third intracellular m2 loop and G protein-coupled receptor kinase 2. J Biol Chem 273:5323–5330

    CAS  PubMed  Google Scholar 

  151. Pals-Rylaarsdam R, Hosey MM (1997) Two homologous phosphorylation domains differentially contribute to desensitization and internalization of the m2 muscarinic acetyl-choline receptor. J Biol Chem 272:14152–14158

    CAS  PubMed  Google Scholar 

  152. Tiberi M, Nash SR, Bertrand L et al (1996) Differential regulation of dopamine D1 receptor responsiveness by various G protein-coupled receptor kinases. J Biol Chem 271:3771–3778

    CAS  PubMed  Google Scholar 

  153. Bouvier M, Hausdorff WP, de Blasi A et al (1988) Removal of phosphorylation sites from the beta 2-adrenergic receptor delays onset of agonist-promoted desensitization. Nature 333:370–373

    CAS  PubMed  Google Scholar 

  154. Hausdorff WP, Campbell PT, Ostrowski J et al (1991) A small region of the beta-adrenergic receptor is selectively involved in its rapid regulation. Proc Natl Acad Sci U S A 88:2979–2983

    CAS  PubMed Central  PubMed  Google Scholar 

  155. Fredericks ZL, Pitcher JA, Lefkowitz RJ (1996) Identification of the G protein-coupled receptor kinase phosphorylation sites in the human beta2-adrenergic receptor. J Biol Chem 271:13796–13803

    CAS  PubMed  Google Scholar 

  156. Seibold A, January BG, Friedman J et al (1998) Desensitization of beta2-adrenergic receptors with mutations of the proposed G protein-coupled receptor kinase phosphorylation sites. J Biol Chem 273:7637–7642

    CAS  PubMed  Google Scholar 

  157. Pak Y, O’Dowd BF, George SR (1997) Agonist-induced desensitization of the mu opioid receptor is determined by threonine 394 preceded by acidic amino acids in the COOH-terminal tail. J Biol Chem 272:24961–24965

    CAS  PubMed  Google Scholar 

  158. Guo J, Wu Y, Zhang W et al (2000) Identification of G protein-coupled receptor kinase 2 phosphorylation sites responsible for agonist-stimulated delta-opioid receptor phosphorylation. Mol Pharmacol 58:1050–1056

    CAS  PubMed  Google Scholar 

  159. Palmer TM, Benovic JL, Stiles GL (1995) Agonist-dependent phosphorylation and desensitization of the rat A3 adenosine receptor. Evidence for a G-protein-coupled receptor kinase-mediated mechanism. J Biol Chem 270:29607–29613

    CAS  PubMed  Google Scholar 

  160. Palmer TM, Stiles GL (1997) Identification of an A2a adenosine receptor domain specifically responsible for mediating short-term desensitization. Biochemistry 36:832–838

    CAS  PubMed  Google Scholar 

  161. Palmer TM, Stiles GL (2000) Identification of threonine residues controlling the agonist-dependent phosphorylation and desensitization of the rat A(3) adenosine receptor. Mol Pharmacol 57:539–545

    CAS  PubMed  Google Scholar 

  162. Vargas GA, von Zastrow M (2004) Identification of a novel endocytic recycling signal in the D1 dopamine receptor. J Biol Chem 279:37461–37469

    CAS  PubMed  Google Scholar 

  163. Ohguro H, Van Hooser JP, Milam AH et al (1995) Rhodopsin phosphorylation and dephosphorylation in vivo. J Biol Chem 270:14259–14262

    CAS  PubMed  Google Scholar 

  164. Liggett SB (2011) Phosphorylation barcoding as a mechanism of directing GPCR signaling. Sci Signal 4(185):pe36. doi:10.1126/scisignal.2002331

    CAS  PubMed  Google Scholar 

  165. Kim OJ, Gardner BR, Williams DB et al (2004) The role of phosphorylation in D1 Dopamine receptor desensitization: evidence for a novel mechanism of arrestin association. J Biol Chem 279:7999–8010

    CAS  PubMed  Google Scholar 

  166. Ferguson SS, Barak LS, Zhang J et al (1996) G-protein-coupled receptor regulation: role of G-protein-coupled receptor kinases and arrestins. Can J Physiol Pharmacol 74:1095–1110

    CAS  PubMed  Google Scholar 

  167. Ferguson SS, Downey WE, Colapietro AM et al (1996) Role of beta-arrestin in mediating agonist-promoted G protein-coupled receptor internalization. Science 271:363–366

    CAS  PubMed  Google Scholar 

  168. Faussner A, Proud D, Towns M et al (1998) Influence of the cytosolic carboxyl termini of human B1 and B2 kinin receptors on receptor sequestration, ligand internalization, and signal transduction. J Biol Chem 273:2617–2623

    CAS  PubMed  Google Scholar 

  169. Tan CM, Brady AE, Nickols HH et al (2004) Membrane trafficking of G protein-coupled receptors. Annu Rev Pharmacol Toxicol 44:559–609

    CAS  PubMed  Google Scholar 

  170. Pals-Rylaarsdam R, Xu Y, Witt-Enderby P et al (1995) Desensitization and internalization of the m2 muscarinic acetylcholine receptor are directed by independent mechanisms. J Biol Chem 270:29004–29011

    CAS  PubMed  Google Scholar 

  171. Seibold A, Williams B, Huang ZF et al (2000) Localization of the sites mediating desensitization of the beta(2)-adrenergic receptor by the GRK pathway. Mol Pharmacol 58:1162–1173

    CAS  PubMed  Google Scholar 

  172. Pak Y, O’Dowd BF, Wang JB et al (1999) Agonist-induced G protein-dependent and -independent down-regulation of the mu opioid receptor. The receptor is a direct substrate for protein-tyrosine kinase. J Biol Chem 274:27610–27616

    CAS  PubMed  Google Scholar 

  173. Hasbi A, Allouche S, Sichel F et al (2000) Internalization and recycling of delta-opioid receptor are dependent on a phosphorylation-dephosphorylation mechanism. J Biol Chem 293:237–247

    CAS  Google Scholar 

  174. Mathuru AL, Mundell SL, Benovic JL et al (2001) Rapid agonist-induced desensitization and internalization of the a2b adenosine receptor is mediated by a serine residue close to the COOH terminus. J Biochem 276:30199–30207

    Google Scholar 

  175. Holtmann MH, Roettger BF, Pinon DI et al (1996) Role of receptor phosphorylation in desensitization and internalization of the secretin receptor. J Biol Chem 271:23566–23571

    CAS  PubMed  Google Scholar 

  176. Moffett S, Rousseau G, Lagace M et al (2001) The palmitoylation state of the beta2-adrenergic receptor regulates the synergistic action of cyclic AMP-dependent protein kinase and beta2-adrenergic receptor kinase involved in its phosphorylation and desensitization. J Neurochem 76:269–279

    CAS  PubMed  Google Scholar 

  177. Lee KB, Ptasienski JA, Pals-Rylaarsdam R et al (2000) Arrestin binding to the M(2) muscarinic acetylcholine receptor is precluded by an inhibitory element in the third intracellular loop of the receptor. J Biol Chem 275:9284–9289

    CAS  PubMed  Google Scholar 

  178. Goodman OB Jr, Krupnick JG, Santini F et al (1996) Beta-arrestin acts as a clathrin adaptor in endocytosis of the beta2-adrenergic receptor. Nature 383:447–450

    CAS  PubMed  Google Scholar 

  179. Hinshaw JE, Schmid SL (1995) Dynamin self-assembles into rings suggesting a mechanism for coated vesicle budding. Nature 374:190–192

    CAS  PubMed  Google Scholar 

  180. Takei K, McPherson PS, Schmid SL et al (1995) Tubular membrane invaginations coated by dynamin rings are induced by GTP-gamma S in nerve terminals. Nature 374:186–190

    CAS  PubMed  Google Scholar 

  181. Schmid SL (1992) The mechanism of receptor-mediated endocytosis—more questions than answers. Bioessays 14:589–596

    CAS  PubMed  Google Scholar 

  182. Lefkowitz RJ (1998) G protein-coupled receptors. III. New roles for receptor kinases and beta-arrestins in receptor signaling and desensitization. J Biol Chem 273:18677–18680

    CAS  PubMed  Google Scholar 

  183. Freedman NJ, Lefkowitz RJ (1996) Desensitization of G protein-coupled receptors. Recent Prog Horm Res 51:319–351

    CAS  PubMed  Google Scholar 

  184. Pitcher JA, Freedman NJ, Lefkowitz RJ (1998) G protein-coupled receptor kinases. Annu Rev Biochem 67:653–692

    CAS  PubMed  Google Scholar 

  185. Krueger KM, Daaka Y, Pitcher JA et al (1997) The role of sequestration in G protein-coupled receptor resensitization. Regulation of beta2-adrenergic receptor dephosphorylation by vesicular acidification. J Biol Chem 272:5–8

    CAS  PubMed  Google Scholar 

  186. Pippig S, Andexinger S, Lohse MJ (1995) Sequestration and recycling of beta 2-adrenergic receptors permit receptor resensitization. Mol Pharmacol 47:666–676

    CAS  PubMed  Google Scholar 

  187. Koenig JA, Edwardson JM (1997) Endocytosis and recycling of G protein-coupled receptors. Trends Pharmacol Sci 18:276–287

    CAS  PubMed  Google Scholar 

  188. Barak LS, Tiberi M, Freedman NJ et al (1994) A highly conserved tyrosine residue in G protein-coupled receptors is required for agonist-mediated beta 2-adrenergic receptor sequestration. J Biol Chem 269:2790–2795

    CAS  PubMed  Google Scholar 

  189. Gabilondo AM, Hegler J, Krasel C et al (1997) A dileucine motif in the C terminus of the beta2-adrenergic receptor is involved in receptor internalization. Proc Natl Acad Sci U S A 94:12285–12290

    CAS  PubMed Central  PubMed  Google Scholar 

  190. Preisser L, Ancellin N, Michaelis L et al (1999) Role of the carboxyl-terminal region, di-leucine motif and cysteine residues in signalling and internalization of vasopressin V1a receptor. FEBS Lett 460:303–308

    CAS  PubMed  Google Scholar 

  191. Benya RV, Fathi Z, Battey JF et al (1993) Serines and threonines in the gastrin-releasing peptide receptor carboxyl terminus mediate internalization. J Biol Chem 268:20285–20290

    CAS  PubMed  Google Scholar 

  192. Roth A, Kreienkamp HJ, Meyerhof W et al (1997) Phosphorylation of four amino acid residues in the carboxyl terminus of the rat somatostatin receptor subtype 3 is crucial for its desensitization and internalization. J Biol Chem 272:23769–23774

    CAS  PubMed  Google Scholar 

  193. Pizard A, Blaukat A, Muller-Esterl W et al (1999) Bradykinin-induced internalization of the human B2 receptor requires phosphorylation of three serine and two threonine residues at its carboxyl tail. J Biol Chem 274:12738–12747

    CAS  PubMed  Google Scholar 

  194. Kennelly PJ, Krebs EG (1991) Consensus sequences as substrate specificity determinants for protein kinases and protein phosphatases. J Biol Chem 266:15555–15558

    CAS  PubMed  Google Scholar 

  195. Onorato JJ, Palczewski K, Regan JW et al (1991) Role of acidic amino acids in peptide substrates of the beta-adrenergic receptor kinase and rhodopsin kinase. Biochemistry 30:5118–5125

    CAS  PubMed  Google Scholar 

  196. Inglese J, Freedman NJ, Koch WJ et al (1993) Structure and mechanism of the G protein-coupled receptor kinases. J Biol Chem 268:23735–23738

    CAS  PubMed  Google Scholar 

  197. Oppermann M, Diverse-Pierluissi M, Drazner MH et al (1996) Monoclonal antibodies reveal receptor specificity among G-protein-coupled receptor kinases. Proc Natl Acad Sci U S A 93:7649–7654

    CAS  PubMed Central  PubMed  Google Scholar 

  198. Chen CK, Zhang K, Church-Kopish J et al (2001) Characterization of human GRK7 as a potential cone opsin kinase. Mol Vis 7:305–313

    CAS  PubMed  Google Scholar 

  199. Min L, Ascoli M (2000) Effect of activating and inactivating mutations on the phosphorylation and trafficking of the human lutropin/choriogonadotropin receptor. Mol Endocrinol 14:1797–1810

    CAS  PubMed  Google Scholar 

  200. Loudon RP, Benovic JL (1994) Expression, purification, and characterization of the G protein-coupled receptor kinase GRK6. J Biol Chem 269:22691–22697

    CAS  PubMed  Google Scholar 

  201. Rankin ML, Marinec PS, Cabrera DM et al (2006) The D1 dopamine receptor is constitutively phosphorylated by G protein-coupled receptor kinase 4. Mol Pharmacol 69:759–769

    CAS  PubMed  Google Scholar 

  202. Yu P, Asico LD, Luo Y et al (2006) D1 Dopamine receptor hyperphosphorylation in renal proximal tubules in hypertension. Kidney Int 70:1072–1079

    CAS  PubMed  Google Scholar 

  203. Felder RA, Jose PA (2006) Mechanisms of disease: the role of GRK4 in the etiology of essential hypertension and salt sensitivity. Nat Clin Pract Nephrol 2:637–650

    CAS  PubMed  Google Scholar 

  204. Dryja TP (2000) Molecular genetics of Oguchi disease, fundus albipunctatus, and other forms of stationary night blindness: LVII Edward Jackson Memorial Lecture. Am J Ophthalmol 130:547–563

    CAS  PubMed  Google Scholar 

  205. Sandberg MA, Weigel-DiFranco C, Rosner B et al (1996) The relationship between visual field size and electroretinogram amplitude in retinitis pigmentosa. Invest Ophthalmol Vis Sci 37:1693–1698

    CAS  PubMed  Google Scholar 

  206. Cideciyan AV, Zhao X, Nielsen L et al (1998) Null mutation in the rhodopsin kinase gene slows recovery kinetics of rod and cone phototransduction in man. Proc Natl Acad Sci U S A 95:328–333

    CAS  PubMed Central  PubMed  Google Scholar 

  207. Shenker A (1995) G protein-coupled receptor structure and function: the impact of disease-causing mutations. Baillieres Clin Endocrinol Metab 9:427–451

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by the Ontario Brain Institute (OBI)—Eplink: The OBI Epilepsy Project (MDT); The National Science and Engineering Research Council (NSERC); and the Dairy Farmers of Canada (DFC). The Canadian Institutes of Health Research (CIHR), The Scottish Rite Charitable Foundation of Canada, and Epilepsy Canada supported the work of Miles Thompson. We thank Dr. Craig Behnke for permission to adapt the image presented in Fig. 1.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Miles D. Thompson .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media New York

About this protocol

Cite this protocol

Thompson, M.D., Cole, D.E.C., Jose, P.A., Chidiac, P. (2014). G Protein-Coupled Receptor Accessory Proteins and Signaling: Pharmacogenomic Insights. In: Yan, Q. (eds) Pharmacogenomics in Drug Discovery and Development. Methods in Molecular Biology, vol 1175. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-0956-8_7

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-0956-8_7

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-0955-1

  • Online ISBN: 978-1-4939-0956-8

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics