Skip to main content

Role of AM Fungi in Alleviating Drought Stress in Plants

  • Chapter
  • First Online:
Use of Microbes for the Alleviation of Soil Stresses

Abstract

Abiotic stress is increasing at an alarming rate throughout the globe. Drought stress is one of the major abiotic stresses responsible for hampering plant growth and development in many arid and semi-arid regions of the world. Drought stress disturbs the plant’s osmotic and ionic balance and hampers uptake of essential nutrients. Drought stress affects many physiological processes like gas exchange and water relations, pigments, organic solutes, lipid peroxidation, and electrolyte leakage, etc. Severe drought is also responsible for the generation of reactive oxygen species (ROS), which are deleterious to the normal functioning of the cell. However, plants are armed with certain antioxidants to defend themselves against these ROSs. Plants interact with certain microorganisms such as fungi that improve their performance during stress. Mycorrhizae is a close association between fungi and plant roots. Mycorrhizal association has shown to enhance crop growth, biomass, and mineral uptake under normal and drought conditions. This chapter throws light on the deleterious effects of drought stress and the beneficial effects of mycorrhizae in delaying or coping with toxic effects of drought stress and maintaining overall physiological balance.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abdel-Fattah GM, Mighed F, Ibrahim AH (2002) Interactive effects of endomycorrhizal fungus glomus etunicatum and phosphorous fertilization on growth and metabolic activities of board bean plants under drought stress conditions. Pak J Biol Sci 5(8):835–841

    Google Scholar 

  • Aboul-Nasr A (1996) Effects of vesicular–arbuscular mycorrhiza on Tagetes erecta and Zinniaelegans. Mycorrhiza 6:61–64

    Google Scholar 

  • Ahmad P (2010) Growth and antioxidant responses in mustard (Brassica juncea L.) plants subjected to combined effect of gibberellic acid and salinity. Arch Agron Soil Sci 56:575–588

    CAS  Google Scholar 

  • Ahmad P, Jhon R (2005) Effect of salt stress on growth and biochemical parameters of Pisum sativum L. Arch Agro Soil Sci 51(6):665–672

    CAS  Google Scholar 

  • Ahmad P, Sharma S (2008) Salt stress and phyto-biochemical responses of plants. Plant Soil Environ 54(3):89–99

    Google Scholar 

  • Ahmad P, Umar S (2011) Antioxidants: oxidative stress management in plants. Studium Press Pvt. Ltd., New Delhi

    Google Scholar 

  • Ahmad P, Sharma S, Srivastava PS (2006) Differential physio-biochemical responses of high yielding varieties of Mulberry (Morus alba) under alkalinity (Na2CO3) stress in vitro. Physiol Mol Biol Plants 12(1):59–66

    CAS  Google Scholar 

  • Ahmad P, Jaleel CA, Salem MA, Nabi G, Sharma S (2010a) Roles of enzymatic and non-enzymatic antioxidants in plants during abiotic stress. Crit Rev Biotechnol 30(3):161–175

    PubMed  CAS  Google Scholar 

  • Ahmad P, Umar S, Sharma S (2010b) Mechanism of free radical scavenging and role of phytohormones during abiotic stress in plants. In: Ashraf M, Ozturk M, Ahmad MSA (eds) Plant adaptation and phytoremediation. Springer, Heidelberg, pp 99–108

    Google Scholar 

  • Ahmad P, Nabi G, Ashraf M (2011a) Cadmium-induced oxidative damage in mustard [Brassica juncea (L.) Czern. & Coss.] plants can be alleviated by salicylic acid. South Afr J Bot 77:36–44

    CAS  Google Scholar 

  • Ahmad P, Nabi G, Jeleel CA, Umar S (2011b) Free radical production, oxidative damage and antioxidant defense mechanisms in plants under abiotic stress. In: Ahmad P, Umar S (eds) Oxidative stress: role of antioxidants in plants. Studium Press Pvt. Ltd., New Delhi, pp 19–53

    Google Scholar 

  • Ahmad P, Hakeem KR, Kumar A, Ashraf M, Akram NA (2012a) Salt-induced changes in photosynthetic activity and oxidative defense system of three cultivars of mustard (Brassica juncea L.). Afr J Biotechnol 11(11):2694–2703

    CAS  Google Scholar 

  • Ahmad P, Ozturk M, Gucel S (2012b) Oxidative damage and antioxidants induced by heavy metal stress in two cultivars of mustard (L) plants. Fresenius Environ Bulletin 21(10):2953–2961

    CAS  Google Scholar 

  • Ahmad P, Ashraf M, Azooz MM, Rasool S, Akram NA (2013) Potassium starvation-induced oxidative stress and antioxidant defense responses in Brassica juncea. J Plant Interactions. doi: 10.1080/17429145.2012.747629 (in Press)

  • Ali MB, Hahn E, Paek K (2005) Effects of temperature on oxidative stress defense systems, lipid peroxidation and lipoxygenase activity in Phalaenopsis. Plant Physiol Biochem 43:213–223

    PubMed  CAS  Google Scholar 

  • Al-Karaki GN, Al-Raddad A (1997) Effects of arbuscular mycorrhizal fungi and drought stress on growth and nutrient uptake of two wheat genotypes differing in drought resistance. Mycorrhiza 7:83–88

    CAS  Google Scholar 

  • Al-Karaki GN, Clark RB (1998) Growth, mineral acquisition, and water use by mycorrhizal wheat grown under water stress. J Plant Nutr 21(2):263–276

    CAS  Google Scholar 

  • Al-Karaki GN, McMichael B, Zah J (2004) Field response of wheat to arbuscular mycorrhizal fungi and drought stress. Mycorrhiza 14:263–269

    PubMed  Google Scholar 

  • Allen MF (1982) Influence of vesicular mycorrhizae on water movement through Bouteloua gracilis (H. B. K.) lag ex Steud. New Phytol 91:191–196

    Google Scholar 

  • Allen MF, Boosalis MG (1983) Effect of two species of VA mycorrhizal fungi on drought tolerance of winter wheat. New Phytol 93:67–76

    Google Scholar 

  • Al-Qarawi AA (2010) Efficiency of arbuscular mycorrhizal (AM) fungi for improving growth, root system architecture, nutrient uptake, leaf hydraulic conductance and photosynthetic pigments of maize and pea plants. J Environ Sci 39:67–82

    CAS  Google Scholar 

  • Ashraf M, Foolad MR (2007) Roles of glycine betaine and proline in improving plant abiotic stress resistance. Environ Exp Bot 59:206–216

    CAS  Google Scholar 

  • Asrar AWA, Elhindi KM (2011) Alleviation of drought stress of marigold (Tagetes erecta) plants by using arbuscular mycorrhizal fungi. Saudi J Biol Sci 18:93–98

    PubMed Central  PubMed  Google Scholar 

  • Asrar AA, Abdel-Fattah GM, Elhindi KM (2012) Improving growth, flower yield, and water relations of snapdragon (Antirhinum majus L.) plants grown under well-watered and water-stress conditions using arbuscular mycorrhizal fungi. Photosynthetica 50(2):305–316

    CAS  Google Scholar 

  • Augé RM (2001) Water relations, drought and vesicular-arbuscular mycorrhizal symbiosis. Mycorrhiza 11:3–42

    Google Scholar 

  • Augé RM, Scheikel KA, Warmple RL (1986) Osmotic adjustment in leaves of VA-mycorrhiza and non-mycorrhizal rose plants in response to drought stress. Plant Physiol 82:765–770

    PubMed Central  PubMed  Google Scholar 

  • Augé RM, Foster JG, Loescher WH et al (1992) Symplastic molality of free amino acids and sugars in Rosa roots with regard to VAM and drought symbiosis. Symbiosis 12:1–17

    Google Scholar 

  • Augé RM, Stodola AJW, Tims JE et al (2001) Moisture retention properties of a mycorrhizal soil. Plant Soil 230:87–97

    Google Scholar 

  • Azcon-Aguilar C, Barcelo A, Vidal MT, de la Vina G (1992) Further studies in the growth and development of micro-progated avocado plants. Agronomie 12:837–840

    Google Scholar 

  • Bartels D (2001) Targeting detoxification pathways: an efficient approach to obtain plants with multiple stress tolerance. Trend Plant Sci 6:284–286

    CAS  Google Scholar 

  • Baslam M, Goicoechea N (2012) water deficit improves the capacity of arbuscular mycorrhizal fungi (AMF) for inducing the accumulation of antioxidant compounds in lettuce leaves. Mycorrhiza 22:347–359

    PubMed  CAS  Google Scholar 

  • Berta G, Fusconi A, Trotta A (1993) VA mycorrhizal infection and the morphology and function of root systems. Environ Exp Bot 33:159–173

    Google Scholar 

  • Bethlenfalvay GJ, Brown MS, Ames RN, Thomas RE (1988) Effects of drought on host and endophyte development in mycorrhizal soybeans in relation to water use and phosphate uptake. Physiol Plant 72:565–571

    CAS  Google Scholar 

  • Bhosale KS, Shinde BP (2011) Influence of arbuscular mycorrhizal fungi on proline and chlorophyll content in Zingiber officinale Rosc grown under water stress. Ind J Fundamental App Life Sci 1(3):172–176

    Google Scholar 

  • Borde M, Dudhane M, Jite P (2012) Growth, water use efficiency and antioxidant defense responses of mycorrhizal and non mycorrhizal Allium sativum L. under drought stress condition. Ann Plant Sci 1:6–11

    Google Scholar 

  • Bowler C, Van Montagu M, Inzé D (1992) Superoxide dismutase and stress tolerance. Ann Rev Plant Physiol Plant Mol Biol 43:83–116

    CAS  Google Scholar 

  • Brachmann A, Parniske M (2006) The most important symbiosis on earth. Soil Biol 4:239

    Google Scholar 

  • Brundrett MC (2002) Coevolution of roots and mycorrhizas of land plants. New Phytol 154:275–304

    Google Scholar 

  • Colla G, Rouphael Y, Cardarelli M, Tullio M, Rivera CM, Rea E (2008) Alleviation of salt stress by arbuscular mycorrhizal in zucchini plants grown at low and high phosphorus concentration. Biol Fertility Soil 44:501–509

    CAS  Google Scholar 

  • Daft MJ, Hogarthi BG (1983) Competitive interactions amongst four species of Glomus on maize and onion. Transactions British Mycol Soc 80:339–345

    Google Scholar 

  • Davies FT, Potter JR, Linderman RG (1993) Drought resistance of mycorrhizal pepper plants independent of leaf P-concentration: response in gas exchange and water relations. Physiol Plant 87:45–53

    CAS  Google Scholar 

  • Davies FT, Svenson SE, Cole JC, Phavaphutanon L, Duray SA, Olalde-Portugal V, Meier CE, Bo SH (1996) Non-nutritional stress acclimation of mycorrhizal woody plants exposed to drought. Tree Physiol 16:985–993

    Google Scholar 

  • de Carvalho K, de Campos MK, Domingues DS, Pereira LF, Vieira LG (2013) The accumulation of endogenous proline induces changes in gene expression of several antioxidant enzymes in leaves of transgenic Swingle citrumelo. Mol Biol Rep 40:3269–3279

    PubMed  CAS  Google Scholar 

  • Dell-Amico J, Torrecillos A, Rodriguez P, Morte A, Sanchez-Blanco MJ (2002) Responses of tomato plants associated with the arbuscular mycorrhizal fungus Glomus clarum during drought and recovery. J Agric Sci 138:387–393

    Google Scholar 

  • Dhanda SS, Sethi GS, Behl RK (2004) Indices of drought tolerance in wheat genotypes at early stages of plant growth. J Agron Crop Sci 190:6–12

    Google Scholar 

  • Duan X, Neuman DS, Reiber JM et al (1996) Mycorrhizal influence on hydraulic and hormonal factors implicated in the control of stomatal conductance during drought. J Exp Bot 47:1541–1550

    CAS  Google Scholar 

  • El-Tohamy W, Schnitzler WH, El-Behairy U et al (1999) Effect of VA mycorrhiza on improving drought and chilling tolerance of bean plants. J Appl Bot 73:178–183

    CAS  Google Scholar 

  • Faber BA, Zasoski RJ, Munns DN, Shackel K (1991) A method for measuring hyphal nutrient and water uptake in mycorrhizal plants. Can J Bot 96:87–94

    Google Scholar 

  • Fagbola O, Osonubi O, Mulongox K, Odunfa SA (2001) Effects of drought stress and arbuscular mycorrhiza on the growth of Gliricdia sepium (Jacq). Walp, Leucaenal leucocephala (Lam). De wit. In simulated eroded soil conditions. Mycorrhiza 11:215–223

    Google Scholar 

  • Foyer CH, Harbinson J (1994) Oxygen metabolism and the regulation of photosynthetic electron transport. In: Foyer CH, Mullineausx PM (eds) Causes of photooxidative stress and amelioration of defense system in plants. CRS Press, Boca Raton, pp 1–4

    Google Scholar 

  • Foyer CH, Lelandais M, Galap C, Kunert KJ (1991) Effects of elevated cytosolic glutathione reductase activity on the cellular glutathione pool and photosynthesis in leaves under normal and stress conditions. Plant Physiol 97:863–872

    PubMed Central  PubMed  CAS  Google Scholar 

  • Foyer CH, Souriau N, Perret S, Lelandais M, Junert KJ (1995) Overexpression of glutathione reductase but not glutathione synthetase leads to increases in antioxidant capacity and resistance to photoinhibition in poplar trees. Plant Physiol 109:1047–1057

    PubMed Central  PubMed  CAS  Google Scholar 

  • Fukutoku Y, Yoshio Y (1981) Source of prolinenitrogen in water-stressed soyabean Glycine max L. I. Protein metabolism and proline accumulation. Plant Cell Physiol 22:1397–1404

    CAS  Google Scholar 

  • Garcia-Garrido JM, Tribak M, Rejon-Palomares A, Ocampo JA, Garcia-Romera I (2000) Hydrolytic enzymes and ability of arbuscular mycorrhizal fungi to colonize roots. J Exp Bot 51:1443–1448

    PubMed  CAS  Google Scholar 

  • Gemma JN, Koske RE, Roberts EM (1997) Mycorrhizal fungi improve drought resistance in creeping bentgrass. J Turfgrass Sci 73:15–29

    Google Scholar 

  • George E, Haussler K, Vetterrlein D, Gorgus E, Marschner H (1992) Water nutrient translocation by hyphae of Glomus mosseae. Can J Bot 70:2130–2137

    Google Scholar 

  • Gianinazzi S, Gollotte A, Binet M, Tuinen D, Redecker D, Wipf (2010) Agroecology: the key role of arbuscular mycorrhizas in ecosystem services. Mycorrhiza 20:519–530

    Google Scholar 

  • Gogorcena Y, Gordon AJ, Escuredo PR, Minchin FR, Witty JF, Moran JF, Becana M (1997) N2 fixation, carbon metabolism, and oxidative damage in nodules of dark-stressed common bean plants. Plant Physiol 113:1193–1201

    PubMed Central  PubMed  CAS  Google Scholar 

  • Goicoechea N, Antolin MC, Sánchez-Díaz M (1997) Gas exchange is related to the hormone balance in mycorrhizal or nitrogen-fixing alfalfa subjected to drought. Physiol Plant 100:989–997

    CAS  Google Scholar 

  • Goicoechea N, Merino S, Sanchez-Dıaz M (2005) Arbuscular mycorrhizal fungi can contribute to maintain antioxidant and carbon metabolism in nodules of Anthyllis cytisoides L. subjected to drought. J Plant Physiol 162:27–35

    PubMed  CAS  Google Scholar 

  • Gregory PJ (2006) Plant roots: growth, activity and interaction with soils. Blackwell, Oxford

    Google Scholar 

  • Hajiboland R, Aliasgharzadeh A, Laiegh SF, Poschenrieder C (2010) Colonization with arbuscular mycorrhizal fungi improves salinity tolerance of tomato (Solanum lycopersicum L.) plants. Plant Soil 331:313–327

    CAS  Google Scholar 

  • Halliwell B, Gutteridge JMC (1989) Free radicals in biology and medicine, 2nd edn. UK, Clarendon Press, Oxford

    Google Scholar 

  • Hamel C, Plenchette C (2007) Mycorrhizae in crop production. Haworth, Binghampton

    Google Scholar 

  • Hodge AT, Helgason Fitter AH (2010) Nutritional ecology of arbuscular mycorrhizal fungi. Fungal Ecol 3:267–273

    Google Scholar 

  • Hossain Z, Mandal AKA, Datta SK, Biswas AK (2006) Isolation of a NaCl tolerant mutant of Chrysanthemum morifolium by gamma radiation: in vitro mutagenesis and selection by salt stress. Funct Plant Biol 33:91–101

    CAS  Google Scholar 

  • Huixing S (2005) Effects of VAM on host plant in the condition of drought stress and its mechanisms. Elect J Biol 1:44–48

    Google Scholar 

  • Ibrahim HA, Abdel-Fattah GM, Eman FM, Abd El_Aziz MH, Shohr AE (2011) Arbuscular mycorrhizal fungi and spermine alleviate the adverse effects of salinity stress on electrolyte leakage and productivity of wheat plants. Phyton-Ann Rei Bot 51:261–276

    Google Scholar 

  • Iturbe-Ormaetxe I, Matamoros MA, Rubio MC, Dalton DA, Becana M (2001) The antioxidants of legume nodule mitochondria. MolPlant–Microbe Interact 14:1189–1196

    Google Scholar 

  • Jatav KS, Agarwal RM, Singh RP, Shrivastava M (2012) Growth and yield responses of wheat (Triticum aestivum L.) to suboptimal water supply and different potassium doses. J Funct Environ Bot 2:39–51

    Google Scholar 

  • Ju HW, Min JH, Chung MS, Kim CS (2013) The atrzf1 mutation of the novel RING-type E3 ubiquitin ligase increases proline contents and enhances drought tolerance in Arabidopsis. Plant Sci 1:203–204

    Google Scholar 

  • Katare DP, Nabi G, Azooz MM, Aeri V, Ahmad P (2012) Biochemical modifications and enhancement of psoralen content in salt-stressed seedlings of Psoralea corylifolia Linn. J Funct Environ Bot 2:65–74

    Google Scholar 

  • Kaya C, Higgs D, Kirnak H, Tas I (2003) Mycorrhizal colonization improves fruit yield and water use efficiency in water- melon (Citrullus Lanatus Thunb.) grown under well watered and water-stressed conditions. Plant Soil 253:287–292

    CAS  Google Scholar 

  • Kaya C, Ashraf M, Sonmez O, Aydemir S, Tuna A, Cullu M (2009) The influence of arbuscular mycorrhizal colonization on key growth parameters and fruit yield of pepper plants grown at high salinity. Sci Hort 121:1–6

    CAS  Google Scholar 

  • Khalafallah AA, Abo-Ghalia HH (2008) Effect of arbuscular mycorrhizal fungi on the metabolic products and activity of antioxidant system in wheat plants subjected to short-term water stress, followed by recovery at different growth stages. J Appl Sci Res 4:559–569

    CAS  Google Scholar 

  • Kormanik PP, Bryan WC, Schultz RC (1980) Procedure and equipment for staining large number of plant roots for endomycorrhizal assay. Can J Microbiol 26:536–538

    PubMed  CAS  Google Scholar 

  • Koyro HW, Ahmad P, Geissler N (2012) Abiotic stress responses in plants: an overview. In: Ahmad P, Prasad MNV (eds) Environmental adaptations and stress tolerance of plants in the era of climate change. Springer, Science+Business Media, New York, pp 1–28

    Google Scholar 

  • Lee BR, Kim KY, Jung WJ, Avice JC, Ourry A, Kim TH (2007) Peroxidases and lignification in relation to the intensity of water-deficit stress in white clover (Trifolium repens L.). J Exp Bot 6:1271–1279

    Google Scholar 

  • Liu R, Li M, Meng X et al (2000) Effects of AM fungi on endogenous hormones in corn and cotton plants. Mycosystem 19:91–96

    Google Scholar 

  • Liu A, Wang B, Hamel C (2004) Arbuscular mycorrhiza colonization and development at suboptimal root zone temperature. Mycorrhiza 14:93–101

    PubMed  CAS  Google Scholar 

  • Maggio A, Reddy MP, Joly RJ (2000) Leaf gas exchange and soluble accumulation in the halophyte Salvadora persica grown at moderate salinity. Environ Exp Bot 44:31–38

    PubMed  CAS  Google Scholar 

  • Martin F, Perotto S, Bonfante P (2007) Mycorrhizal fungi: a fungal community at the interface between soil and roots. In: Pinton R, Varanini Z, Nannipieri P (eds) The rhizosphere: biochemistry and organic substances at the soil-plant interface. Marcel Dekker, New York, pp 201–236

    Google Scholar 

  • Mathur N, Vyas A (1995) Influence of VAM on net photosynthesis and transpiration of Ziziphus mauritiana. J Plant Physiol 147:328–330

    CAS  Google Scholar 

  • Miransari M (2010) Contribution of arbuscular mycorrhizal symbiosis to plant growth under different types of soil stresses. Review article. Plant Biol 12:563–569

    PubMed  CAS  Google Scholar 

  • Miransari et al (2014) Plant hormones as signals in arbuscular mycorrhizal symbiosis. Crit Rev Biotechnol (in press)

    Google Scholar 

  • Morte A, Lovisolo C, Schubert A (2000) Effect of drought stress on growth and water relations of the mycorrhizal association Helianthemum almeriense: Terfezia claveryi. Mycorrhiza 10:115–119

    CAS  Google Scholar 

  • Moucheshi A, Heidari B, Assad MT (2012) Alleviation of drought stress effects on wheat using arbuscular mycorrhizal symbiosis. Int J Agri Sci 2:35–47

    Google Scholar 

  • Munns R, James RA, Lauchli A (2006) Approaches to increasing the salt tolerance of wheat and other cereals. J Exp Bot 57:1025–1043

    PubMed  CAS  Google Scholar 

  • Naidoo G (1985) Effects of waterlogging and salinity on plant water relations and on the accumulation of solutes in three mangrove species. Aquat Bot 22:133–143

    Google Scholar 

  • Naidoo G (1986) Response of the mangrove Rhizophora mucronata L. to high salinities and low osmotic potentials. S Afri J Bot 52:124–128

    Google Scholar 

  • Navarro-Fernandez CM, Aroca R, Barea JM (2011) Influence of arbuscular mycorrhizal fungi and water regime on the development of endemic Thymus species in dolomitic soils. Appl Soil Ecol 48:31–37

    Google Scholar 

  • Nemec S, Guy G (1982) Carbohydrate status of mycorrhizal and nonmycorrhizal citrus rootstocks. J Amer Soc Hort Sci 107:177–180

    CAS  Google Scholar 

  • Noctor G, Foyer CH (1998) Ascorbate and glutathione: keeping active oxygen under control. Ann Rev Plant Physiol Plant Mol Biol 49:249–279

    CAS  Google Scholar 

  • Pandey R, Agarwal RM (1998) Water stress induced changes in proline contents and nitrate reductase activity in rice under light and dark conditions. Physiol Mol Biol Plant 4:53–57

    Google Scholar 

  • Porcel R, Ruiz-Lozano JM (2004) Arbuscular mycorrhizal influence on leaf water potential, solute accumulation, and oxidative stress in soybean plants subjected to drought stress. J Exp Bot 55:1743–1750

    PubMed  CAS  Google Scholar 

  • Porcel R, Barea JM, Ruiz-Lozan JM (2003) Antioxidant activities in mycorrhizal soybean plants under drought stress and their possible relationship to the process of nodule. New Phytol 157:135–143

    CAS  Google Scholar 

  • Ramakrishnan B, Johri BN, Gupta RK (1988) Influence of the VAM fungus Glomus caledonius on free proline accumulation in water-stressed maize. Curr Sci 57:1082–1084

    Google Scholar 

  • Rasool S, Ahmad A, Siddiqi TO, Ahmad P (2013) Changes in growth, lipid peroxidation and some key antioxidant enzymes in chickpea genotypes under salt stress. Acta Physiol Plant 35:1039–1050

    CAS  Google Scholar 

  • Read DJ, Duckett JG, Francis R, Ligrone R, Russell A (2000) Symbiotic fungal associations in lower land plants. Philos Trans R Soc Lond B 355:815–831

    CAS  Google Scholar 

  • Robert M, Augé RM, Heather D, Carl F, Sams EA, Ghazala N (2008) Hydraulic conductance and water potential gradients in squash leaves showing mycorrhiza-induced increases in stomatal conductance. Mycorrhiza 18:115–121

    Google Scholar 

  • Ruiz-Lozano JM (2003) Arbuscular mycorrhizal symbiosis and alleviation of osmotic stress. New perspectives for molecular studies. Mycorrhiza 13:309–317

    PubMed  Google Scholar 

  • Ruiz-Lozano JM, Azcon R (1995) Hyphal contribution to water uptake in mycorrhizal plants as affected by the fungal species and water status. Physiol Plant 95:472–478

    CAS  Google Scholar 

  • Ruiz-Lozano JM, Azcón R (1996) Mycorrhizal colonization and drought stress as factors affecting nitrate reductase activity in lettuce plants. Agricul Ecosyst Environ 60:175–181

    CAS  Google Scholar 

  • Ruiz-Lozano JM, Azcón R (1997) Effect of calcium application on the tolerance of mycorrhizal lettuce plants to polyethylene glycol-induced water stress. Symbiosis 23:9–22

    Google Scholar 

  • Ruiz-Lozano JM, Azcon R, Gomez M (1995) Effects of arbuscular-mycorrhizal Glomus species on drought tolerance: physiological and nutritional plant responses. Appl Environ Microbiol 61:456–460

    PubMed Central  PubMed  CAS  Google Scholar 

  • Ruiz-Lozano JM, Collados C, Barea JM, Azcón R (2001) Arbuscular mycorrhizal symbiosis can alleviate drought-induced nodule senescence in soybean plants. New Phytol 151:493–502

    CAS  Google Scholar 

  • Safir GR, Boyer JS, Gerdemann JW (1971) Mycorrhizal enhancement of water transport in soybean. Science 172:581–583

    PubMed  CAS  Google Scholar 

  • Scheilenbaum L, Sprenger N, Schuepp H, Wiemken A, Boller E (1999) Effect of drought transgenic expression of a fructan synthe- sizing enzyme and of mycorrhizal symbiosis on growth and soluble carbohydrate pools in tobacco plants. New Phytol 142:67–77

    Google Scholar 

  • Schellenbaum L, Muller J, Boller T et al (1998) Effects of drought on non-mycorrhizal and mycorrhizal maize: changes in the pools of non-structural carbohydrates, in the activities of invertase and trehalase, and in the pools of amino acids and imino acids. New Phytol 138:59–66

    CAS  Google Scholar 

  • Schüssler A, Schwarzott D, Walker C (2001) A new fungal phylum, the glomeromycota: phylogeny and evolution. Mycol Res 105:1413–1421

    Google Scholar 

  • Shao HB, Chu LY, Wu G, Zhang JH, Lu ZH, Hu YC (2007) Changes of some antioxidative physiological indices under soil water deficits among 10 wheat (Triticum aestivum L.) genotypes at tillering stage. Colloids Surf B 54:143–149

    CAS  Google Scholar 

  • Sharma A, Yadav S (2013) Review on role of vam fungi in crop plant-soil system. Int J Agricul Sci Res 3:17–24

    Google Scholar 

  • Shaul O (2002) Magnesium transport and function in plants: the tip of the iceberg. Biometals 15:309–323

    PubMed  CAS  Google Scholar 

  • Signorelli S, Corpas FJ, Borsani O, Barroso JB, Monza J (2013) Water stress induces a differential and spatially distributed nitro-oxidative stress response in roots and leaves of Lotus japonicus. Plant Sci 201–202:137–146

    PubMed  Google Scholar 

  • Slama I, Tayachi S, Jdey A, Rouached A, Abdelly C (2011) Differential response to water deficit stress in alfalfa (Medicago sativa) cultivars: growth, water relations, osmolyte accumulation and lipid peroxidation. African J Biotechnol 10:16250–16259

    CAS  Google Scholar 

  • Smith SE, Read DJ (2008) Mineral nutrition, toxic element accumulation and water relations of arbuscular mycorrhizal plants. In: Mycorrhizal symbiosis, 3rd Edn. Academic Press, London, ISBN-10: 0123705266, pp 145–148

    Google Scholar 

  • Sorial ME (2001) Growth, phosphorus uptake and water relations of wheat infected with an arbuscular mycorrhizal fungus under water stress. Ann Agric Sci Moshtohor 39:909–931

    Google Scholar 

  • Subramanian KS, Charest C (1995) Influence of arbuscular mycorrhizae on the metabolism of maize under drought stress. Mycorrhiza 5:273–278

    Google Scholar 

  • Subramanian KS, Charest C (1997) Nutritional, growth, and reproductive responses of maize (Zea mays L.) to arbuscular mycorrhizal inoculation during and after drought stress at tasselling. Mycorrhiza 7:25–32

    Google Scholar 

  • Subramanian KS, Charest C, Dwyer LM, Hamilton RI (1995) Arbuscular mycorrhizas and water relations in maize under drought stress at tasselling. New Phytol 129:643–650

    Google Scholar 

  • Szabados L, Savoure A (2010) Proline: a multifunctional amino acid. Trend Plant Sci 15:89–97

    CAS  Google Scholar 

  • Tahat MM, Radziah O, Kamaruzaman S, Kadir J, Masdek NH (2008a) Role of plant host in determining differential responses to Ralstonia solanacearum and Glomus mosseae. Plant Pathol J 7:140–147

    Google Scholar 

  • Tahat MM, Kamaruzaman S, Radziah O, Kadir J, Masdek HN (2008b) Response of (Lycopersicum esculentum Mill.) to different arbuscular mycorrhizal fungi species. Asian J Plant Sci 7:479–484

    Google Scholar 

  • Tahat MM, Kamaruzaman S, Radziah O, Kadir J, Masdek HN (2008c) Plant host selectivity for multiplication of Glomus mosseae spore. Int J Bot 4:466–470

    Google Scholar 

  • Tahat MM, Sijam K, Othman R (2010a) Mycorrhizal fungi as a biocontrol agent. Plant Pathol J9:198–207

    Google Scholar 

  • Tahat MM, Sijam K, Othman R (2010b) The role of tomato and corn root exudates on Glomus mosseae spores germination and Ralstonia solanacearum growth in vitro. Int J Plant Pathol 1:1–12

    Google Scholar 

  • Tang M, Chen H, Huang JC, Tian ZQ (2009) AM fungi effects on the growth and physiology of Zea mays seedlings under diesel stress. Soil Biol Biochem 41:936–940

    CAS  Google Scholar 

  • Tarafdar JC (1995) Role of a VA mycorrhizal fungus on growth and water relations in wheat in presence of organic and inorganic phosphates. J Ind Soc Soil Sci 43:197–203

    Google Scholar 

  • Thakur PS (1980) Comparative responses of two differentially sensitive Zea mays Linn. varieties to water stress. PhD thesis, H. P. University, Shimla

    Google Scholar 

  • Tuna AL, Kaya C, Dikilitas M, Higgs D (2008) The combined effects of gibberellic acid and salinity on some antioxidant enzyme activities, plant growth parameters and nutritional status in maize plants. Environ Expt Bot 63:1–9

    Google Scholar 

  • Udaiyan K, Devi APG, Chitra A, Greep S (1997) Possible role of arbuscular mycorrhizal (AM) fungi on drought tolerance in Vigna unguiculata subsp. unguiculata (L.) Walp and Leucaena latisiliqua L. Pertanika J Tropical Agricul Sci 20:135–146

    Google Scholar 

  • Verbruggen N, Hermans C (2008) Proline accumulation in plants: a review. Amino Acids 35:753–759

    PubMed  CAS  Google Scholar 

  • Wang B, Qiu YL (2006) Phylogenetic distribution and evolution of mycorrhizas in land plants. Mycorrhiza 16:299–363

    PubMed  CAS  Google Scholar 

  • Wang MY, Xia RX (2009) Effects of arbuscular mycorrhizal fungi on growth and iron uptake of Poncirus trifoliata under different pH. Acta Microbiol Sin 49:1374–1379

    CAS  Google Scholar 

  • Willekens H, Van Montagu M, Van Camp W (1995) Catalase in plants. Mol Breeding 1:207–228

    CAS  Google Scholar 

  • Wu Q, Xia R (2004) Effects of arbuscular mycorrhizal fungi on plant growth and osmotic adjustment matter content of trifoliate orange seedlings under water stress. J Plant Physiol Mol Biol 30:583–588

    Google Scholar 

  • Wu Q, Xia RX (2006) Arbuscular mycorrhizal fungi influence growth, osmotic adjustment and photosynthesis of citrus under well-watered and water stress conditions. J Plant Physiol 163:417–425

    PubMed  CAS  Google Scholar 

  • Wu QS, Zou YN, Xia RX, Wang MY (2007) Five Glomus species affect water relations of Citrus tangerine during drought stress. Bot Stud 48:147–154

    Google Scholar 

  • Wu QS, Xia RX, Zou YN (2008) Improved soil structure and citrus growth after inoculation with three arbuscular mycorrhizal fungi under drought stress. Eur J Soil Biol 44:122–128

    Google Scholar 

  • Wu QS, Li GH, Zou YN (2011) Roles of arbuscular mycorrhizal fungi on growth and nutrient acquisition of peach (Prunus persica L. batsch) seedlings. J Animal plant Sci 21:746–750

    CAS  Google Scholar 

  • Zhang Q, Xu L, Tang J, Bai M, Chen X (2011) Arbuscular mycorrhizal mediation of biomass-density relationship of Medicago sativa L. under two water conditions in a field experiment. Mycorrhiza 21:269–277

    PubMed  Google Scholar 

  • Zhu XC, Song FB, Xu HW (2010) Influence of arbuscular mycorrhizae on lipid peroxidation and antioxidant enzyme activity of maize plants under temperature stress. Mycorrhiza 20:325–332

    PubMed  CAS  Google Scholar 

  • Zhu X, Song F, Liu S (2011) Arbuscular mycorrhiza impacts on drought stress of maize plants by lipid peroxidation, proline content and activity of antioxidant system. J Food Agric Environ 9:583–587

    Google Scholar 

  • Zhu XC, Song FB, Liu SQ, Liu TD, Zhou X (2012) Arbuscular mycorrhizae improves photosynthesis and water status of Zea mays L. under drought stress. Plant Soil Environ 58:186–191

    CAS  Google Scholar 

  • Zlatev Z, Stotanov Z (2005) Effect of water stress on leaf water relations of young bean plants. J Central Eur Agric 6:5–14

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Parvaiz Ahmad .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media New York

About this chapter

Cite this chapter

Hameed, A. et al. (2014). Role of AM Fungi in Alleviating Drought Stress in Plants. In: Miransari, M. (eds) Use of Microbes for the Alleviation of Soil Stresses. Springer, New York, NY. https://doi.org/10.1007/978-1-4939-0721-2_4

Download citation

Publish with us

Policies and ethics