Skip to main content

Contribution of Confocal Laser Scanning Microscopy in Deciphering Biofilm Tridimensional Structure and Reactivity

  • Protocol
  • First Online:

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1147))

Abstract

Confocal laser scanning microscopy (CLSM) became in last years an invaluable technique to study biofilms since it enables researchers to explore noninvasively the dynamic architecture and the reactivity of these biological edifices. The constant development of fluorescent markers and genetic tools along with the improvement of spatial, spectral, and temporal resolution of imaging facilities offers new opportunities to better decipher microbial biofilm properties. In this contribution, we proposed to describe the contribution of CLSM to the study of biofilm architecture and reactivity throughout two different illustrative approaches.

This is a preview of subscription content, log in via an institution.

Buying options

Protocol
USD   49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Springer Nature is developing a new tool to find and evaluate Protocols. Learn more

References

  1. Stewart PS, Franklin MJ (2008) Physiological heterogeneity in biofilms. Nat Rev Microbiol 6:199–210

    Article  CAS  PubMed  Google Scholar 

  2. Tolker-Nielsen T, Molin S (2000) Spatial organization of microbial biofilm communities. Microb Ecol 40:75–84

    PubMed  Google Scholar 

  3. Bridier A, Tischenko E, Dubois-Brissonnet F et al (2011) Deciphering biofilm structure and reactivity by multiscale time-resolved fluorescence analysis. Adv Exp Med Biol 715:333–349

    Article  CAS  PubMed  Google Scholar 

  4. Palmer RJ, Sternberg C (1999) Modern microscopy in biofilm research: confocal microscopy and other approaches. Curr Opin Biotechnol 10:263–268

    Article  CAS  PubMed  Google Scholar 

  5. Heydorn A, Nielsen AT, Hentzer M et al (2000) Quantification of biofilm structures by the novel computer program COMSTAT. Microbiology 146:2395–2407

    CAS  PubMed  Google Scholar 

  6. Xavier JB, White DC, Almeida JS (2003) Automated biofilm morphology quantification from confocal laser scanning microscopy imaging. Water Sci Technol 47:31–37

    CAS  PubMed  Google Scholar 

  7. Daims H, Lucker S, Wagner M (2006) Daime, a novel image analysis program for microbial ecology and biofilm research. Environ Microbiol 8:200–213

    Article  CAS  PubMed  Google Scholar 

  8. Beyenal H, Donovan C, Lewandowski Z, Harkin G (2004) Three-dimensional biofilm structure quantification. J Microbiol Methods 59:395–413

    Article  CAS  PubMed  Google Scholar 

  9. Klausen M, Heydorn A, Ragas P et al (2003) Biofilm formation by Pseudomonas aeruginosa wild type, flagella and type IV pili mutants. Mol Microbiol 48:1511–1524

    Article  CAS  PubMed  Google Scholar 

  10. Zippel B, Neu TR (2011) Characterization of glycoconjugates of extracellular polymeric substances in tufa-associated biofilms by using fluorescence lectin-binding analysis. Appl Environ Microbiol 77:505–516

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  11. Bridier A, Dubois-Brissonnet F, Boubetra A et al (2010) The biofilm architecture of sixty opportunistic pathogens deciphered using a high throughput CLSM method. J Microbiol Methods 82:64–70

    Article  CAS  PubMed  Google Scholar 

  12. Wimpenny J, Manz W, Szewzyk U (2000) Heterogeneity in biofilms. FEMS Microbiol Rev 24:661–671

    Article  CAS  PubMed  Google Scholar 

  13. Rani SA, Pitts B, Beyenal H et al (2007) Spatial patterns of DNA replication, protein synthesis, and oxygen concentration within bacterial biofilms reveal diverse physiological states. J Bacteriol 189:4223–4233

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  14. Beloin C, Ghigo JM (2005) Finding gene-expression patterns in bacterial biofilms. Trends Microbiol 13:16–19

    Article  CAS  PubMed  Google Scholar 

  15. Resch A, Rosenstein R, Nerz C, Götz F (2005) Differential gene expression profiling of Staphylococcus aureus cultivated under biofilm and planktonic conditions. Appl Environ Microbiol 71:2663–2676

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  16. Hall-Stoodley L, Stoodley P (2009) Evolving concepts in biofilm infections. Cell Microbiol 11:1034–1043

    Article  CAS  PubMed  Google Scholar 

  17. Lebeaux D, Ghigo JM (2012) Management of biofilm-associated infections: what can we expect from recent research on biofilm lifestyles? Med Sci (Paris) 28:727–739

    Article  Google Scholar 

  18. Bridier A, Briandet R, Thomas V, Dubois-Brissonnet F (2011) Resistance of bacterial biofilms to disinfectants: a review. Biofouling 27:1017–1032

    Article  CAS  PubMed  Google Scholar 

  19. Hoiby N, Bjarnsholt T, Givskov M, Molin S, Ciofu O (2010) Antibiotic resistance of bacterial biofilms. Int J Antimicrob Agents 35:322–332

    Article  PubMed  Google Scholar 

  20. Bridier A, Dubois-Brissonnet F, Greub G et al (2011) Dynamics of the action of biocides in Pseudomonas aeruginosa biofilms. Antimicrob Agents Chemother 55:2648–2654

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  21. Bridier A, Sanchez-Vizuete Mdel P, Le Coq D et al (2012) Biofilms of a Bacillus subtilis hospital isolate protect Staphylococcus aureus from biocide action. PLoS One 7:e44506

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  22. Corbin A, Pitts B, Parker A, Stewart PS (2011) Antimicrobial penetration and efficacy in an in vitro oral biofilm model. Antimicrob Agents Chemother 55:3338–3344

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  23. Davison WM, Pitts B, Stewart PS (2010) Spatial and temporal patterns of biocide action against Staphylococcus epidermidis biofilms. Antimicrob Agents Chemother 54:2920–2927

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  24. Takenaka S, Trivedi HM, Corbin A et al (2008) Direct visualization of spatial and temporal patterns of antimicrobial action within model oral biofilms. Appl Environ Microbiol 74:1869–1875

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  25. Geeraerd AH, Valdramidis VP, Van Impe JF (2005) GInaFiT, a freeware tool to assess non-log-linear microbial survivor curves. Int J Food Microbiol 102:95–105

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Romain Briandet .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media New York

About this protocol

Cite this protocol

Bridier, A., Briandet, R. (2014). Contribution of Confocal Laser Scanning Microscopy in Deciphering Biofilm Tridimensional Structure and Reactivity. In: Donelli, G. (eds) Microbial Biofilms. Methods in Molecular Biology, vol 1147. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-0467-9_18

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-0467-9_18

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-0466-2

  • Online ISBN: 978-1-4939-0467-9

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics