Skip to main content

Bifunctional Antibody Fragment-Based Fusion Proteins for the Targeted Elimination of Pathogenic T-Cell Subsets

  • Protocol
  • First Online:
Systemic Lupus Erythematosus

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1134))

  • 3241 Accesses

Abstract

Pathogenic effector T cells are key contributors to autoimmune diseases such as systemic lupus erythematosus (SLE). General inhibition of T cells using, e.g., methotrexate, prednisolone, or TNF blockers, has prominent therapeutic effects frequently at the cost of severe long-term side effects and toxicity. Therefore, targeted strategies that can selectively inhibit or eliminate pathogenic T cells are sought after as a new approach to safely block perpetual inflammatory T-cell responses and inhibit concomitant progressive tissue destruction. Of particular interest in this respect is the use of the so-called single-chain fragments of variable region (scFv) antibody fragments for the targeted reactivation of Fas-dependent activation-induced cell death (AICD). Recently, we demonstrated that a recombinant fusion protein comprising a T-cell-targeted anti-CD7 scFv antibody fragment genetically fused to soluble FasL (sFasL) can eliminate synovial fluid T cells in the absence of activity toward resting peripheral blood cells. Here, we describe a detailed protocol for construction and preclinical evaluation of such scFv:FasL fusion proteins that may be used to selectively eliminate pathogenic immune cells.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Lubberts E, Koenders MI, van den Berg WB (2005) The role of T-cell interleukin-17 in conducting destructive arthritis: lessons from animal models. Arthritis Res Ther 7:29–37

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  2. Lubberts E (2010) Th17 cytokines and arthritis. Semin Immunopathol 32:43–53

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  3. Shah K, Lee WW, Lee SH et al (2010) Dysregulated balance of Th17 and Th1 cells in systemic lupus erythematosus. Arthritis Res Ther 12:R53

    Article  PubMed Central  PubMed  Google Scholar 

  4. Moreland LW, Pratt PW, Mayes MD et al (1995) Double-blind, placebo-controlled multicenter trial using chimeric monoclonal anti-CD4 antibody, cM-T412, in rheumatoid arthritis patients receiving concomitant methotrexate. Arthritis Rheum 38:1581–1588

    Article  CAS  PubMed  Google Scholar 

  5. Choy EH, Chikanza IC, Kingsley GH, Corrigall V, Panayi GS (1992) Treatment of rheumatoid arthritis with single dose or weekly pulses of chimeric anti-CD4 monoclonal antibody. Scand J Immunol 36:291–298

    Article  CAS  PubMed  Google Scholar 

  6. Kirkham BW, Thien F, Pelton BK et al (1992) Chimeric CD7 monoclonal antibody therapy in rheumatoid arthritis. J Rheumatol 19:1348–1352

    CAS  PubMed  Google Scholar 

  7. Schiff M, Keiserman M, Codding C et al (2008) Efficacy and safety of abatacept or infliximab vs placebo in ATTEST: a phase III, multi-centre, randomised, double-blind, placebo-controlled study in patients with rheumatoid arthritis and an inadequate response to methotrexate. Ann Rheum Dis 67:1096–1103

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  8. Chiang EY, Kolumam GA, Yu X et al (2009) Targeted depletion of lymphotoxin-alpha-expressing TH1 and TH17 cells inhibits autoimmune disease. Nat Med 15:766–773

    Article  CAS  PubMed  Google Scholar 

  9. Brenner D, Krammer PH, Arnold R (2008) Concepts of activated T cell death. Crit Rev Oncol Hematol 66:52–64

    Article  PubMed  Google Scholar 

  10. Green DR, Droin N, Pinkoski M (2003) Activation-induced cell death in T cells. Immunol Rev 193:70–81

    Article  CAS  PubMed  Google Scholar 

  11. de Bruyn M, Bremer E, Helfrich W (2013) Antibody-based fusion proteins to target death receptors in cancer. Cancer Lett 332:175–183

    Article  PubMed  Google Scholar 

  12. Schneider P, Holler N, Bodmer JL et al (1998) Conversion of membrane-bound Fas(CD95) ligand to its soluble form is associated with downregulation of its proapoptotic activity and loss of liver toxicity. J Exp Med 187:1205–1213

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  13. Bremer E, ten CB, Samplonius DF, de Leij LF, Helfrich W (2006) CD7-restricted activation of Fas-mediated apoptosis: a novel therapeutic approach for acute T-cell leukemia. Blood 107:2863–2870

    Article  CAS  PubMed  Google Scholar 

  14. Bremer E, Abdulahad WH, de BM et al (2011) Selective elimination of pathogenic synovial fluid T-cells from rheumatoid arthritis and juvenile idiopathic arthritis by targeted activation of Fas-apoptotic signaling. Immunol Lett 138:161–168

    Article  CAS  PubMed  Google Scholar 

  15. Eggleton P, Bremer E, Tarr JM et al (2011) Frequency of Th17 CD20+ cells in the peripheral blood of rheumatoid arthritis patients is higher compared to healthy subjects. Arthritis Res Ther 13:R208

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  16. Sandilands GP, Perry M, Wootton M, Hair J, More IA (1999) B-cell antigens within normal and activated human T cells. Immunology 96:424–433

    Article  CAS  PubMed  Google Scholar 

  17. Wilk E, Witte T, Marquardt N et al (2009) Depletion of functionally active CD20+ T cells by rituximab treatment. Arthritis Rheum 60:3563–3571

    Article  CAS  PubMed  Google Scholar 

  18. Holley JE, Bremer E, Kendall AC et al (2013) CD20+ Th17 cells in multiple sclerosis brain may be targeted for apoptosis. Multiple sclerosis and related disorders (in revision)

    Google Scholar 

  19. Helfrich W, Haisma HJ, Magdolen V et al (2000) A rapid and versatile method for harnessing scFv antibody fragments with various biological effector functions. J Immunol Methods 237:131–145

    Article  CAS  PubMed  Google Scholar 

  20. Bremer E, Kuijlen J, Samplonius D et al (2004) Target cell-restricted and -enhanced apoptosis induction by a scFv:sTRAIL fusion protein with specificity for the pancarcinoma-associated antigen EGP2. Int J Cancer 109:281–290

    Article  CAS  PubMed  Google Scholar 

  21. de Bruyn M, Wei Y, Wiersma VR et al (2011) Cell surface delivery of TRAIL strongly augments the tumoricidal activity of T cells. Clin Cancer Res 17:5626–5637

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media, New York

About this protocol

Cite this protocol

Helfrich, W., Bremer, E. (2014). Bifunctional Antibody Fragment-Based Fusion Proteins for the Targeted Elimination of Pathogenic T-Cell Subsets. In: Eggleton, P., Ward, F. (eds) Systemic Lupus Erythematosus. Methods in Molecular Biology, vol 1134. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-0326-9_7

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-0326-9_7

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-0325-2

  • Online ISBN: 978-1-4939-0326-9

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics