Skip to main content

A Neurovascular Blood–Brain Barrier In Vitro Model

  • Protocol

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1135))

Abstract

The cerebral microvasculature possesses certain cellular features that constitute the blood–brain barrier (BBB) (Abbott et al., Neurobiol Dis 37:13–25, 2010). This dynamic barrier separates the brain parenchyma from peripheral blood flow and is of tremendous clinical importance: for example, BBB breakdown as in stroke is associated with the development of brain edema (Rosenberg and Yang, Neurosurg Focus 22:E4, 2007), inflammation (Kuhlmann et al., Neurosci Lett 449:168–172, 2009; Coisne and Engelhardt, Antioxid Redox Signal 15:1285–1303, 2011), and increased mortality. In vivo, the BBB consists of brain endothelial cells (BEC) that are embedded within a precisely regulated environment containing astrocytes, pericytes, smooth muscle cells, and glial cells. These cells experience modulation by various pathways of intercellular communication and by pathophysiological processes, e.g., through neurovascular coupling (Attwell et al., Nature 468:232–243, 2010), cortical spreading depression (Gursoy-Ozdemir et al., J Clin Invest 113:1447–1455, 2004), or formation of oxidative stress (Yemisci et al., Nat Med 15:1031–1037, 2009). Hence, this interdependent assembly of cells is referred to as the neurovascular unit (NVU) (Zlokovic, Nat Med 16:1370–1371, 2010; Zlokovic, Neuron 57:178–201, 2008). Experimental approaches to investigate the BBB in vitro are highly desirable to study the cerebral endothelium in health and disease. However, due to the complex interactions taking place within the NVU in vivo, it is difficult to mimic this interplay in vitro.

Here, we describe a murine blood–brain barrier coculture model consisting of cortical organotypic slice cultures and brain endothelial cells that includes most of the cellular components of the NVU including neurons, astrocytes, and brain endothelial cells. This model allows the experimental analysis of several crucial BBB parameters such as transendothelial electrical resistance or tight junction protein localization by immunohistochemistry and live cell imaging of reactive oxygen species.

This is a preview of subscription content, log in via an institution.

Buying options

Protocol
USD   49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Springer Nature is developing a new tool to find and evaluate Protocols. Learn more

References

  1. Argaw AT, Asp L, Zhang J et al (2012) Astrocyte-derived VEGF-A drives blood–brain barrier disruption in CNS inflammatory disease. J Clin Invest 122:2454–2468. doi:10.1172/JCI60842

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  2. Attwell D, Buchan AM, Charpak S et al (2010) Glial and neuronal control of brain blood flow. Nature 468:232–243. doi:10.1038/nature09613

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  3. Bell RD, Winkler EA, Sagare AP et al (2010) Pericytes control key neurovascular functions and neuronal phenotype in the adult brain and during brain aging. Neuron 68:409–427. doi:10.1016/j.neuron.2010.09.043

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  4. Rosenberg GA, Yang Y (2007) Vasogenic edema due to tight junction disruption by matrix metalloproteinases in cerebral ischemia. Neurosurg Focus 22:E4

    Article  PubMed  Google Scholar 

  5. Zehendner CM, Librizzi L, De Curtis M et al (2011) Caspase-3 contributes to ZO-1 and Cl-5 tight-junction disruption in rapid anoxic neurovascular unit damage. PLoS One 6:e16760. doi:10.1371/journal.pone.0016760

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  6. Gursoy-Ozdemir Y, Qiu J, Matsuoka N et al (2004) Cortical spreading depression activates and upregulates MMP-9. J Clin Invest 113:1447–1455. doi:10.1172/JCI21227

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  7. Yemisci M, Gursoy-Ozdemir Y, Vural A et al (2009) Pericyte contraction induced by oxidative-nitrative stress impairs capillary reflow despite successful opening of an occluded cerebral artery. Nat Med 15:1031–1037. doi:10.1038/nm.2022

    Article  CAS  PubMed  Google Scholar 

  8. Zlokovic BV (2010) Neurodegeneration and the neurovascular unit. Nat Med 16:1370–1371. doi:10.1038/nm1210-1370

    Article  CAS  PubMed  Google Scholar 

  9. Stanimirovic DB, Friedman A (2012) Pathophysiology of the neurovascular unit: disease cause or consequence? J Cerebr Blood Flow Metabol 32:1207–1221. doi:10.1038/jcbfm.2012.25

    Article  CAS  Google Scholar 

  10. Coisne C, Engelhardt B (2011) Tight junctions in brain barriers during CNS inflammation. Antioxid Redox Signal 15(5):1285–1303. doi:10.1089/ars.2011.3929

    Article  CAS  PubMed  Google Scholar 

  11. Zlokovic BV (2008) The blood–brain barrier in health and chronic neurodegenerative disorders. Neuron 57:178–201. doi:10.1016/j.neuron.2008.01.003

    Article  CAS  PubMed  Google Scholar 

  12. Sandoval KE, Witt KA (2008) Blood–brain barrier tight junction permeability and ischemic stroke. Neurobiol Dis 32:200–219. doi:10.1016/j.nbd.2008.08.005

    Article  CAS  PubMed  Google Scholar 

  13. Deli MA, Abrahám CS, Kataoka Y et al (2005) Permeability studies on in vitro blood–brain barrier models: physiology, pathology, and pharmacology. Cell Mol Neurobiol 25:59–127

    Article  PubMed  Google Scholar 

  14. Armulik A, Genové G, Betsholtz C (2011) Pericytes: developmental, physiological, and pathological perspectives, problems, and promises. Dev Cell 21:193–215. doi:10.1016/j.devcel.2011.07.001

    Article  CAS  PubMed  Google Scholar 

  15. Daneman R, Zhou L, Kebede AA et al (2010) Pericytes are required for blood–brain barrier integrity during embryogenesis. Nature 468:562–566. doi:10.1038/nature09513

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  16. Kuhlmann CRW, Zehendner CM, Gerigk M, Closhen D et al (2009) MK801 blocks hypoxic blood–brain-barrier disruption and leukocyte adhesion. Neurosci Lett 449:168–172. doi:10.1016/j.neulet.2008.10.096

    Article  CAS  PubMed  Google Scholar 

  17. Nakagawa S, Deli MA, Kawaguchi H et al (2009) A new blood–brain barrier model using primary rat brain endothelial cells, pericytes and astrocytes. Neurochem Int 54:253–263. doi:10.1016/j.neuint.2008.12.002

    Article  CAS  PubMed  Google Scholar 

  18. Duport S, Robert F, Muller D et al (1998) An in vitro blood–brain barrier model: cocultures between endothelial cells and organotypic brain slice cultures. Proc Natl Acad Sci U S A 95:1840–1845

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  19. Zehendner CM, Luhmann HJ, Kuhlmann CR (2009) Studying the neurovascular unit: an improved blood–brain barrier model. J Cereb Blood Flow Metab 29:1879–1884

    Article  PubMed  Google Scholar 

  20. Abbott NJ, Patabendige AAK, Dolman DEM et al (2010) Structure and function of the blood–brain barrier. Neurobiol Dis 37:13–25. doi:10.1016/j.nbd.2009.07.030

    Article  CAS  PubMed  Google Scholar 

  21. Zehendner CM, Wedler HE, Luhmann HJ (2013) A Novel In Vitro Model to Study Pericytes in the Neurovascular Unit of the Developing Cortex. PLoS ONE 8(11): e81637. doi:10.1371/journal.pone.0081637

  22. Stoppini L, Buchs PA, Muller D (1991) A simple method for organotypic cultures of nervous tissue. J Neurosci Meth 37:173–182

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work is supported by grants of the Deutsche Forschungsgemeinschaft. CMZ is supported by a stage 1 grant of the University Medical Center of the Johannes Gutenberg-University Mainz. RW is financially aided by the MAIFOR program of the University Medical Center of the Johannes Gutenberg-University Mainz.

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media New York

About this protocol

Cite this protocol

Zehendner, C.M., White, R., Hedrich, J., Luhmann, H.J. (2014). A Neurovascular Blood–Brain Barrier In Vitro Model. In: Milner, R. (eds) Cerebral Angiogenesis. Methods in Molecular Biology, vol 1135. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-0320-7_33

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-0320-7_33

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-0319-1

  • Online ISBN: 978-1-4939-0320-7

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics