Skip to main content

GAD Gene Therapy for Parkinson’s Disease

  • Chapter
  • First Online:
Translational Neuroscience

Abstract

The ability to directly modulate intracellular processes through genetic manipulation has long been felt to have great potential for treating intractable neurological and psychiatric diseases. To date, the largest number of clinical trials of central nervous system gene therapy has been in patients with Parkinson’s disease (PD). Most of these have used adeno-associated virus (AAV) as a vehicle, which we demonstrated to be safe and effective for stable gene therapy in the brain more than 20 years ago. Here, we describe the development and results of the first human gene therapy for PD, which used AAV to transfer the gene for glutamic acid decarboxylase (GAD) into the subthalamic nucleus (STN). The STN is in the basal ganglia circuitry which is dysfunctional in PD, and human therapy for drug resistant PD has focused upon either lesioning or electrical stimulation of the STN for many years. In an initial open label pilot study, unilateral injection of AAV-STN into the STN of the more symptomatic hemisphere demonstrated safety and suggested evidence of efficacy based upon both motor improvements and reversal of functional imaging abnormalities up to 1 year. This led to a randomized, double-blind phase II clinical trial of bilateral AAV-GAD into the STN compared with patients receiving bilateral sham surgery. This confirmed the effectiveness of AAV-GAD, as the treated patients showed significantly greater improvements than the sham patients throughout both the 6-month blinded phase and full 12-month study phase, again with a very good safety profile. Functional imaging further supported these findings and identified a pattern of changes unique to the sham patients with improvement which was not seen in either the AAV-GAD patients or sham non-responders. These combined data support ongoing development of AAV-GAD as the only gene therapy in the CNS to date to demonstrate efficacy compared with contemporaneous sham controls and provide a stronger foundation for the further development of CNS gene therapy for a variety of disorders.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Walter BL, Vitek JL. Surgical treatment for Parkinson’s disease. Lancet Neurol. 2004;3(12):719–28.

    Article  PubMed  Google Scholar 

  2. Kumar R, et al. Double-blind evaluation of subthalamic nucleus deep brain stimulation in advanced Parkinson’s disease. Neurology. 1998;51(3):850–5.

    Article  CAS  PubMed  Google Scholar 

  3. Fink DJ, et al. In vivo expression of beta-galactosidase in hippocampal neurons by HSV-mediated gene transfer. Hum Gene Ther. 1992;3(1):11–9.

    Article  CAS  PubMed  Google Scholar 

  4. Kaplitt MG, et al. Expression of a functional foreign gene in adult mammalian brain following in vivo transfer via a herpes simplex virus type 1 defective viral vector. Mol Cell Neurosci. 1991;2(4):320–30.

    Article  CAS  PubMed  Google Scholar 

  5. Mastrangeli A, et al. Diversity of airway epithelial cell targets for in vivo recombinant adenovirus-mediated gene transfer. J Clin Invest. 1993;91(1):225–34.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. During MJ, et al. Long-term behavioral recovery in parkinsonian rats by an HSV vector expressing tyrosine hydroxylase. Science. 1994;266:1399–403.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Kaplitt MG, et al. Long-term gene expression and phenotypic correction using adeno-associated virus vectors in the mammalian brain. Nat Genet. 1994;8(2):148–54.

    Article  CAS  PubMed  Google Scholar 

  8. Freed CR, et al. Transplantation of embryonic dopamine neurons for severe Parkinson’s disease. N Engl J Med. 2001;344(10):710–9.

    Article  CAS  PubMed  Google Scholar 

  9. Gross RE, et al. Intrastriatal transplantation of microcarrier-bound human retinal pigment epithelial cells versus sham surgery in patients with advanced Parkinson’s disease: a double-blind, randomised, controlled trial. Lancet Neurol. 2011;10(6):509–19.

    Article  PubMed  Google Scholar 

  10. Ma Y, et al. Dyskinesia after fetal cell transplantation for parkinsonism: a PET study. Ann Neurol. 2002;52(5):628–34.

    Article  PubMed  Google Scholar 

  11. Olanow CW, et al. A double-blind controlled trial of bilateral fetal nigral transplantation in Parkinson’s disease. Ann Neurol. 2003;54(3):403–14.

    Article  PubMed  Google Scholar 

  12. Deuschl G, et al. A randomized trial of deep-brain stimulation for Parkinson’s disease. N Engl J Med. 2006;355(9):896–908.

    Article  CAS  PubMed  Google Scholar 

  13. Weaver FM, et al. Bilateral deep brain stimulation vs best medical therapy for patients with advanced Parkinson disease: a randomized controlled trial. JAMA. 2009;301(1):63–73.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Hamani C, et al. The subthalamic nucleus in the context of movement disorders. Brain. 2004;127(Pt 1):4–20.

    Article  PubMed  Google Scholar 

  15. Patel NK, et al. Unilateral subthalamotomy in the treatment of Parkinson’s disease. Brain. 2003;126(Pt 5):1136–45.

    Article  PubMed  Google Scholar 

  16. Su PC, et al. Treatment of advanced Parkinson’s disease by subthalamotomy: one-year results. Mov Disord. 2003;18(5):531–8.

    Article  PubMed  Google Scholar 

  17. Hutchison WD, et al. Neurophysiological identification of the subthalamic nucleus in surgery for Parkinson’s disease. Ann Neurol. 1998;44(4):622–8.

    Article  CAS  PubMed  Google Scholar 

  18. Levy R, et al. Lidocaine and muscimol microinjections in subthalamic nucleus reverse Parkinsonian symptoms. Brain. 2001;124(Pt 10):2105–18.

    Article  CAS  PubMed  Google Scholar 

  19. Petri D, et al. GABAA-receptor activation in the subthalamic nucleus compensates behavioral asymmetries in the hemiparkinsonian rat. Behav Brain Res. 2013;252:58–67.

    Article  CAS  PubMed  Google Scholar 

  20. Luo J, et al. Subthalamic GAD gene therapy in a Parkinson’s disease rat model. Science. 2002;298:425–9.

    Article  CAS  PubMed  Google Scholar 

  21. Lee B, et al. Enhanced expression of glutamate decarboxylase 65 improves symptoms of rat parkinsonian models. Gene Ther. 2005;12(15):1215–22.

    Article  CAS  PubMed  Google Scholar 

  22. Emborg ME, et al. Subthalamic glutamic acid decarboxylase gene therapy: changes in motor function and cortical metabolism. J Cereb Blood Flow Metab. 2007;27(3):501–9.

    Article  CAS  PubMed  Google Scholar 

  23. Kaplitt MG, et al. Safety and tolerability of gene therapy with an adeno-associated virus (AAV) borne GAD gene for Parkinson’s disease: an open label, phase I trial. Lancet. 2007;369(9579):2097–105.

    Article  CAS  PubMed  Google Scholar 

  24. Feigin A, et al. Modulation of metabolic brain networks after subthalamic gene therapy for Parkinson’s disease. Proc Natl Acad Sci U S A. 2007;104(49):19559–64.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Asanuma K, et al. Network modulation in the treatment of Parkinson’s disease. Brain. 2006;129(Pt 10):2667–78.

    Article  PubMed  PubMed Central  Google Scholar 

  26. Lang AE, et al. Randomized controlled trial of intraputamenal glial cell line-derived neurotrophic factor infusion in Parkinson disease. Ann Neurol. 2006;59(3):459–66.

    Article  CAS  PubMed  Google Scholar 

  27. Marks Jr WJ, et al. Gene delivery of AAV2-neurturin for Parkinson’s disease: a double-blind, randomised, controlled trial. Lancet Neurol. 2010;9(12):1164–72.

    Article  CAS  PubMed  Google Scholar 

  28. Nutt JG, et al. Randomized, double-blind trial of glial cell line-derived neurotrophic factor (GDNF) in PD. Neurology. 2003;60(1):69–73.

    Article  CAS  PubMed  Google Scholar 

  29. Ma Y, et al. Abnormal metabolic network activity in Parkinson’s disease: test-retest reproducibility. J Cereb Blood Flow Metab. 2007;27(3):597–605.

    Article  PubMed  PubMed Central  Google Scholar 

  30. Pourfar M, et al. Assessing the microlesion effect of subthalamic deep brain stimulation surgery with FDG PET. J Neurosurg. 2009;110(6):1278–82.

    Article  PubMed  Google Scholar 

  31. LeWitt PA, et al. AAV2-GAD gene therapy for advanced Parkinson’s disease: a double-blind, sham-surgery controlled, randomised trial. Lancet Neurol. 2011;10(4):309–19.

    Article  CAS  PubMed  Google Scholar 

  32. Ko JH, et al. Network modulation following sham surgery in Parkinson’s disease. J Clin Invest. 2014;124(8):3656–66.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael G. Kaplitt MD PhD .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer Science+Business Media New York

About this chapter

Cite this chapter

Kaplitt, M.G., During, M.J. (2016). GAD Gene Therapy for Parkinson’s Disease. In: Tuszynski, M. (eds) Translational Neuroscience. Springer, Boston, MA. https://doi.org/10.1007/978-1-4899-7654-3_5

Download citation

Publish with us

Policies and ethics