Skip to main content

Measure-Theoretic Boundaries of Markov Chains, 0–2 Laws and Entropy

  • Chapter
Harmonic Analysis and Discrete Potential Theory

Abstract

The classic Poisson formula giving an integral representation of bounded harmonic functions in the unit disk in terms of its boundary values has a long history (as it follows from its very name). Given a Markov operator P on a state space X one can easily define harmonic functions as invariant functions of the operator P, but in order to speak about their boundary values one needs a boundary, because no boundary is normally attached to the state space of a Markov chain (as distinct from bounded Euclidean domains common for the classic potential theory).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. A.F. Abrahamse, The tail a-field of a Markov chain, Ann. Math. Stat. 40 (1969), 127–136.

    Article  MathSciNet  MATH  Google Scholar 

  2. A. Avez, Harmonic fuctions on groups, in “Differential Geometry and Relativity,” Reidel, Dordrecht, 1976, pp. 27-32.

    Google Scholar 

  3. D. Bisch, Entropy of subfactors and entropy of random walks on groups, preprint, 1990.

    Google Scholar 

  4. D. Blackwell, On transient Markov processes with a countable number of states and stationary transition probabilities, Ann. Math. Stat. 26 (1955), 654–658.

    Article  MathSciNet  MATH  Google Scholar 

  5. D. Blackwell, D. Freedman, The tail a-field of a Markov chain and a theorem of Orey, Ann. Math. Stat. 35 (1964), 1291–1295.

    Article  MathSciNet  MATH  Google Scholar 

  6. D.I. Cartwright, Singularities of the Green function of a random walk on a discrete group, preprint, 1991.

    Google Scholar 

  7. D.I. Cartwright and St. Sawyer, The Martin boundary for general isotropic random walks in a tree, J. Theor. Prob. (1991) (to appear).

    Google Scholar 

  8. N.N. Čencov, “Statistical Decision Rules and Optimal Inference,” Amer. Math. Soc, Providence, R.I., 1982.

    Google Scholar 

  9. G. Choquet, J. Deny, Sur l’equation de convolution μ = μ * σ, C. R. Acad. Sci. Paris (Sér. A) 250 (1960), 799–801.

    MathSciNet  MATH  Google Scholar 

  10. H. Cohn, On the tail events of a Markov chain, Z. Wahr. 29 (1974), 65–72.

    Article  MATH  Google Scholar 

  11. H. Cohn, On the invariant events of a Markov chain, Z. Wahr. 48 (1979), 81–96.

    Article  MATH  Google Scholar 

  12. A. Connes, E.J. Woods, Hyperfinite von Neumann algebras and Poisson boundaries of time dependent random walks, Pacific J. Math. 137 (1989), 225–243.

    Article  MathSciNet  MATH  Google Scholar 

  13. I.P. Cornfeld, S.V. Fomin, Ya.G. Sinai, “Ergodic Theory,” Springer-Verlag, Berlin, 1982.

    Book  MATH  Google Scholar 

  14. Y. Derriennic, Lois “zéro ou deux” pour les processus de Markov, applications aux marches aléatoires, Ann. Inst. H. Poincaré, Sect. B 12 (1976), 111–129.

    MathSciNet  MATH  Google Scholar 

  15. Y. Derriennic, Quelques applications du théorème ergodique sous-additif, Astérisque 74 (1980), 183–201.

    MathSciNet  MATH  Google Scholar 

  16. Y. Derriennic, Entropie, théorèmes limite et marches aléatoires, Lect. Notes Math. 1210 (1986), 241–284, Springer-Verlag, Berlin.

    Google Scholar 

  17. E.B. Dynkin, “Markov Processes and Related Problems of Analysis,” Cambridge Univ. Press, 1982.

    Google Scholar 

  18. S.R. Foguel, Iterates of a convolution on a non-abelian group, Ann. Inst. H. Poincaré (Sect. B) 11 (1975), 199–202.

    MathSciNet  MATH  Google Scholar 

  19. H. Föllmer, Random fields and diffusion processes, Springer Lecture Notes in Math. 1362 (1988), 101–203.

    Article  Google Scholar 

  20. A. Freire, On the Martin boundary of Riemannian products, J. Diff. Geom. 33 (1991), 215–232.

    MathSciNet  MATH  Google Scholar 

  21. L. Garnett, Foliations, the ergodic theorem and Brownian motion, J. Funct. Anal. 51 (1983), 285–311.

    Article  MathSciNet  MATH  Google Scholar 

  22. K. Itô, H.P. McKean, Jr., “Diffusion Processes and their Sample Paths,” Springer-Verlag, Berlin, 1974.

    MATH  Google Scholar 

  23. B. Jamison, S. Orey, Markov chains recurrent in the sence of Harris, Z. Wahr. 8 (1967), 41–48.

    Article  MathSciNet  MATH  Google Scholar 

  24. V.A. Kaimanovich, Examples of non-commutative groups with non-trivial exit boundary, J. Soviet Math. 28 (1985), 579–591.

    Article  Google Scholar 

  25. V.A. Kaimanovich, An entropy criterion for maximality of the boundary of random walks on discrete groups, Soviet Math. Dokl. 31 (1985), 193–197.

    Google Scholar 

  26. V.A. Kaimanovich, Brownian motion and harmonic functions on covering manifolds. An entropy approach, Soviet Math. Dokl. 33 (1986), 812–816.

    Google Scholar 

  27. V.A. Kaimanovich, Brownian motion on foliations: entropy, invariant measures, mixing, Funct. Anal. Appl. 22 (1988), 326–328.

    Article  MathSciNet  Google Scholar 

  28. V.A. Kaimanovich, Invariant measures of the geodesic flow and measures at infinity on negatively curved manifolds, Ann. Inst. H. Poincaré (Physique théorique) 53 (1990), 361–393.

    MathSciNet  MATH  Google Scholar 

  29. V.A. Kaimanovich, Boundary and entropy of random walks in random environment, in “Proceedings 5th International Vilnius Conference on Prob. Theory and Math. Statistic,” VSP/Mokslas (to appear).

    Google Scholar 

  30. V.A. Kaimanovich, Measure-theoretic boundaries for generalized products of Markov operators, in preparation.

    Google Scholar 

  31. V.A. Kaimanovich, Factorization of bounded harmonic functions on products of Riemannian manifolds, in preparation.

    Google Scholar 

  32. V.A. Kaimanovich and A. M. Vershik, Random walks on discrete groups: boundary and entropy, Ann. Prob. 11 (1983), 457–490.

    Article  MathSciNet  MATH  Google Scholar 

  33. G. Keller, G. Kersting, U. Rösier, On the asymptotic behaviour of solutions of stochastic differential equations, Z. Wahr. 68 (1984), 163–189.

    Article  MATH  Google Scholar 

  34. U. Krengel, “Ergodic Theorems,” de Gruyter, Berlin, 1985.

    Book  MATH  Google Scholar 

  35. F. Ledrappier, Une relation entre entropie, dimension et exposant pour certaines marches aléatoires, C. R. Acad. Sci. Paris (Sér. I) 296 (1983), 369–372.

    MathSciNet  MATH  Google Scholar 

  36. F. Ledrappier, Ergodic properties of Brownian motion on covers of compact negatively curved manifolds, Bol. Soc. Bras. Mat. 19 (1988), 115–140.

    Article  MathSciNet  MATH  Google Scholar 

  37. F. Ledrappier, Sharp estimates for the entropy, these Proceedings.

    Google Scholar 

  38. M. Lin, On the “zero-two” law for conservative Markov processes, Z. Wahr. 61 (1982), 513–525.

    Article  MATH  Google Scholar 

  39. T. Lyons, Random thoughts on reversible potential theory, in preparation.

    Google Scholar 

  40. S.A. Molchanov, On Martin boundaries for the direct product of Markov chains, Theor. Prob. Appl. 12 (1967), 307–310.

    Article  MATH  Google Scholar 

  41. S. Orey, Recurrent Markov chains, Pacific J. Math. 9 (1959), 805–827.

    Article  MathSciNet  MATH  Google Scholar 

  42. D. Ornstein, L. Sucheston, An operator theorem on L 1-convergence to zero with applications to Markov kernels, Ann. Math. Stat. 41 (1970), 1631–1639.

    Article  MATH  Google Scholar 

  43. M.A. Picardello, W. Woess, Martin boundaries of Cartesian products of Markov chains, preprint, 1990.

    Google Scholar 

  44. M.S. Pinsker, “Information and Informational Stability of Random Variables and Processes,” Holden-Day, San Francisco, 1964.

    Google Scholar 

  45. S. Popa, Sousfacteurs, action des groupes et cohomologie, C. R. Acad. Sci. Paris (Sér. I) 309 (1989), 771–776.

    MATH  Google Scholar 

  46. D. Revuz, “Markov Chains,” North-Holland, Amsterdam, 1984.

    MATH  Google Scholar 

  47. V.A. Rokhlin, On the fundamental ideas of measure theory, Amer. Math. Soc. Translations (Ser. 1) 10 (1962), 1–54.

    Google Scholar 

  48. M. Rosenblatt, “Markov Processes, Structure and Asymptotic Behaviour,” Springer-Verlag, Berlin, 1971.

    Book  Google Scholar 

  49. U. Rösler, Das 0-1-Gesetz der terminalen σ-Algebra bei Harrisirrfahrten, Z. Wahr. 37 (1977), 227–242.

    Article  MATH  Google Scholar 

  50. K. Schmidt, A probabilistic proof of ergodic decomposition, Sankhyã (Ser. A) 40 (1978), 10–18.

    MATH  Google Scholar 

  51. N.Th. Varopoulos, Long range estimates for Markov chains, Bull. Sc. Math. 109 (1985), 225–252.

    MathSciNet  MATH  Google Scholar 

  52. A.M. Vershik, Superstability of hyperbolic automorphisms and unitary dilations of Markov operators, (in Russian), Vestnik Leningrad Univ. Math. 20 3 (1987), 28–33.

    MathSciNet  Google Scholar 

  53. D. Voiculescu, Perturbations of operators, connections with singular integrals, hyperbolicity and entropy, these Proceedings.

    Google Scholar 

  54. W. Woess, Boundaries of random walks on graphs and groups with infinitely many ends, Israel J. Math. 68 (1989), 271–301.

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1992 Springer Science+Business Media New York

About this chapter

Cite this chapter

Kaimanovich, V.A. (1992). Measure-Theoretic Boundaries of Markov Chains, 0–2 Laws and Entropy. In: Picardello, M.A. (eds) Harmonic Analysis and Discrete Potential Theory. Springer, Boston, MA. https://doi.org/10.1007/978-1-4899-2323-3_13

Download citation

  • DOI: https://doi.org/10.1007/978-1-4899-2323-3_13

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4899-2325-7

  • Online ISBN: 978-1-4899-2323-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics