Skip to main content

Antisense in Abundance: The Ribosome as a Vehicle for Antisense RNA

  • Chapter
Genetic Engineering

Part of the book series: Genetic Engineering ((GEPM,volume 20))

Abstract

We have developed in Tetrahymena thermophila a new vehicle for introducing antisense RNAs into cells, the “antisense ribosome”. This system allows antisense RNAs to be expressed and to function as part of a very stable and abundant RNA molecule, the large subunit ribosomal RNA (rRNA), without adversely affecting rRNA function (1). Unlike almost all other organisms, the ciliate T. thermophila contains a single copy of its rRNA genes (rDNA) in its silent germline genome (2). It has multiple copies in the form of short, linear chromosomes in its transcribed somatic genome (3, 4). This unique situation plus a transformation system that allows complete replacement of the somatic rDNA have provided convenient ways to study rDNA through traditional and modern genetic methods. The single germline copy of the rDNA makes classical genetic studies possible (5, 6). With the transformation system, rDNA can be altered as desired in vitro and used to transform cells. If functional, the transforming rDNA can totally replace the somatic rDNA in transformed lines (7, 8). A series of studies (8–11) have revealed interesting features of rRNA variable regions leading to the realization that rRNA can be exploited to serve as a carrier of RNA sequences, such as antisense sequences, that can be designed to exert specific effects in the cell. This method of presenting an antisense RNA to a cell may magnify its effects on gene expression since rRNA is very abundant and stable and is in close physical proximity to mRNAs. This article will summarize the relevant features of the rRNA variable regions and describe the creation of “antisense ribosomes” and their potential applications in T. thermophila and other organisms.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Sweeney, R., Fan, Q. and Yao, M.-C. (1996) Proc. Nat. Acad. Sci. U.S.A. 93, 8518–8523.

    Article  CAS  Google Scholar 

  2. Yao, M.-C. and Gall, J.G. (1977) Cell 12, 121–132.

    Article  PubMed  CAS  Google Scholar 

  3. Yao, M.-C., Kimmel, A.R. and Gorovsky, M.A. (1974) Proc. Nat. Acad. Sci. U.S.A. 71, 3082–3086.

    Article  CAS  Google Scholar 

  4. Karrer, K.M. and Gall, J.G. (1976) J. Mol. Biol. 104, 421–453.

    Article  PubMed  CAS  Google Scholar 

  5. Bruns, P.J., Katzen, A.L., Martin, L. and Blackburn, E.H. (1985) Proc. Nat. Acad. Sci. U. S. A. 82, 2844–2846.

    Article  CAS  Google Scholar 

  6. Sweeney, R., Yao, C.-H. and Yao, M.-C. (1991) Genetics 127, 327–334.

    PubMed  CAS  Google Scholar 

  7. Yao, M.-C. and Yao, C.-H. (1989) Mol. Cell. Biol. 9, 1092–1099.

    PubMed  CAS  Google Scholar 

  8. Sweeney, R. and Yao, M.C. (1989) EMBO J. 8, 933–938.

    PubMed  CAS  Google Scholar 

  9. Musters, W., Boon, K, van der Sande, C.A.F.M., van Heerikhuizen, H. and Planta, R.J. (1990) EMBO J. 9, 3989–3996.

    PubMed  CAS  Google Scholar 

  10. Musters, W., Venema, J., van der Linden, G., van Heerikhuizen, H., Klootwijk, J. and Planta, R.J. (1989) Mol. Cell. Biol. 9, 551–559.

    PubMed  CAS  Google Scholar 

  11. Sweeney, R., Chen, L. and Yao, M.-C. (1993) Mol. Cell. Biol. 13, 4814–4825.

    PubMed  CAS  Google Scholar 

  12. Gray, M.W. and Schnare, M.N. (1990) in The Ribosome: Structure, Function and Evolution (Hill, W.E., Dahlberg, A., Garrett, R.A., Moore, P.B., Schlessinger, D. and Warner, J.R., eds.), pp. 589–597, American Society for Microbiology, Washington, DC.

    Google Scholar 

  13. Gerbi, S.A. (1992) in Ribosomal RNA: Structure, Evolution, Processing and Function in Protein Synthesis (Zimmerman, R.A. and Dahlberg, A.E., eds.), pp. 71–87, CRC Press, New York, NY.

    Google Scholar 

  14. Clark, C.G., Tague, B.W., Ware, V.C. and Gerbi, S.A. (1984) Nucl. Acids Res. 12, 6197–6220.

    Article  PubMed  CAS  Google Scholar 

  15. Hassouna, N., Michot, B. and Bachellerie, J.-P. (1984) Nucl. Acids Res. 12, 3563–3583.

    Article  PubMed  CAS  Google Scholar 

  16. Raue, H.A., Musters, W., Rutgers, C.A., Van’t Riet, J. and Planta, R.J. (1990) in The Ribosome: Structure, Function and Evolution (Hill, W.E., Dahlberg, A., Garrett, R.A., Moore, P.B., Schlessinger, D. and Warner, J.R., eds.), pp. 217–235, American Society for Microbiology, Washington, DC.

    Google Scholar 

  17. Gorski, J.L., Gonzalez, I.L. and Schmickel, R.D. (1987) J. Mol. Evol. 24, 236–251.

    Article  PubMed  CAS  Google Scholar 

  18. Han, H., Schepartz, A., Pellegrini, M. and Dervan, P. (1994) Biochemistry 33, 9831–9844.

    Article  PubMed  CAS  Google Scholar 

  19. Schnare, M.N., Damberger, S.H., Gray, M.W. and Gutell, R.R. (1996) J. Mol. Biol. 256, 701–719.

    Article  PubMed  CAS  Google Scholar 

  20. Sweeney, R., Chen, L. and Yao, M.-C (1994) Mol. Cell. Biol. 14, 4203–4215.

    PubMed  CAS  Google Scholar 

  21. Jeeninga, R.E., van Delft, Y., de Graff-Vincent, M., Dirks-Mulder, A., Venema, J. and Raue, H.A. (1997) RNA 3, 476–488.

    PubMed  CAS  Google Scholar 

  22. van Nues, R.W., Venema, J., Planta, R.J. and Raue, H.A. (1997) Chromosoma 105, 523–531.

    Article  PubMed  Google Scholar 

  23. Sullenger, B.A., Lee, T.C., Smith, CA., Ungers, G.E. and Gilboa, E. (1990) Mol. Cell. Biol. 10, 6512–6523.

    PubMed  CAS  Google Scholar 

  24. Wagner, R.W., Matteucci, M.D., Lewis, J.G., Gutierrez, A.J., Moulds, C. and Froehler, B.C. (1993) Science 260, 1510–1513.

    Article  PubMed  CAS  Google Scholar 

  25. Hallberg, R.L. and Bruns, P.J. (1976) J. Cell Biol. 71, 383–394.

    Article  PubMed  CAS  Google Scholar 

  26. Green, P.J., Pines, O. and Inouye, M. (1986) Annu. Rev. Biochem. 55, 569–597.

    Article  PubMed  CAS  Google Scholar 

  27. Stein, C.A. and Cheng, Y.-C. (1993) Science 261, 1004–1012.

    Article  PubMed  CAS  Google Scholar 

  28. van der Krol, A.R., Mol, J.N.M. and Stuitje, A.R. (1988) BioTechniques 6, 958–976.

    PubMed  Google Scholar 

  29. Shen, X., Yu, L., Weir, J.W. and Gorovsky, M.A. (1995) Cell 82, 46–56.

    Article  Google Scholar 

  30. Gaertig, J. and Gorovsky, M.A. (1992) Proc. Nat. Acad. Sci. U.S.A. 89, 9196–9200.

    Article  CAS  Google Scholar 

  31. Orias, E., Flacks, M. and Satir, B.H. (1983) J. Cell Sci. 64, 49–67.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1998 Springer Science+Business Media New York

About this chapter

Cite this chapter

Sweeney, R., Fan, Q., Yao, MC. (1998). Antisense in Abundance: The Ribosome as a Vehicle for Antisense RNA. In: Setlow, J.K. (eds) Genetic Engineering. Genetic Engineering, vol 20. Springer, Boston, MA. https://doi.org/10.1007/978-1-4899-1739-3_8

Download citation

  • DOI: https://doi.org/10.1007/978-1-4899-1739-3_8

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4899-1741-6

  • Online ISBN: 978-1-4899-1739-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics