Skip to main content

Theoretical Perspectives on In Vitro and In Vivo Protein Folding

  • Chapter

Part of the book series: NATO ASI Series ((NSSB,volume 325))

Abstract

It is now well established that in order to execute specific biological functions proteins must adopt well defined three dimensional structures.1,2 The diverse biological demands placed on proteins are probably the reason why one observes seemingly large classes of protein structures. However, the process by which proteins acquire their three dimensional structure remains an unsolved problem in biochemistry and molecular biology. The text book description of the folding of proteins follows the classic work of Anfinsen on the spontaneous in vitro refolding of ribonuclease.3 This work suggests that the protein folding is a self-assembly process which means that all the information needed for folding is contained in the various solvent induced interactions between the amino acids comprising a protein molecule. The self-assembly process does not require additional input of energy or other constraints. Since many proteins have been made to fold in vitro it follows that the major principles of protein folding can be formulated without the need to involve extra cellular components. It therefore follows that the protein folding problem reduces to a statistical mechanical description of finite sized branched heteropolymers.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. R. Jaenicke, “Protein Structure and Protein Engineering”, (Mossbach Colloq. 39, Springer-Verlag, Berlin, 1988).

    Google Scholar 

  2. R. Jaenicke, “Protein Folding: Local Structures, Domains, Subunits, and Assemblies”, Biochemistry 30:3147 (1991).

    Article  PubMed  CAS  Google Scholar 

  3. C.B. Anfinsen, Principles that Govern the Folding of Protein Chains, Science 181:223 (1973).

    Article  PubMed  CAS  Google Scholar 

  4. C. Levinthal in “Mossbauer Spectroscopy in Biological Systems” (Proceedings of a meeting held in Allerton House, Monticello, Illinois, University of Illinois, Press, 1969).

    Google Scholar 

  5. J.D. Honeycutt and D. Thirumalai, Metastability of the Folded States of Globular Proteins, Proc. Natl. Acad. Sci. (USA) 87:3526 (1990).

    Article  CAS  Google Scholar 

  6. R.J. Ellis and S.M. Van der Vies, “Molecular Chaperones”, Ann. Rev. Biochem 60: 321 (1991).

    Article  PubMed  CAS  Google Scholar 

  7. R.B. Freedman in “Protein Folding”, Edited by T. E. Creighton 455 (W. H. Freeman and Co., New York, 1992).

    Google Scholar 

  8. J.D. Bryngelson and P.G. Wolynes, Spin Glasses and the Statistical Mechanics of Protein Folding, Proc. Natl. Acad. Sci. 84:7524 (1987); Intermediates and Barrier Crossing in a Random Energy Model (with Applications to Protein Folding), J. Phys. Chem. 93:6902 (1989).

    Article  PubMed  CAS  Google Scholar 

  9. M.S. Friedrichs and P.G. Wolynes, Toward Protein Tertiary Structure Recognition by Means of Associative Memory Hamiltonian, Science 246:371 (1989).

    Article  PubMed  CAS  Google Scholar 

  10. T. Garel and H. Orland, Mean Field Model for Protein Folding, Europhys. Lett. 6:307 (1988).

    Article  CAS  Google Scholar 

  11. T. Garel and H. Orland, Chemical Sequence and Spatial Structure in Simple Models of Biopolymers Europhys. Lett. 8:327 (1988).

    Google Scholar 

  12. J. Bascle, T. Garel, and H. Orland, Some Physical Approaches to Protein Folding, J. Phys. I (France), 3:259 (1993).

    Article  CAS  Google Scholar 

  13. E.I. Shakhnovich and A.M. Gutin, Frozen States of Disordered Heteropolymers. J. Phvs. A22:1647 (1989).

    Google Scholar 

  14. E.I. Shakhnovich and A. M. Gutin, Implication of Thermodynamics of Protein Folding for Evolution of Primary Sequences Nature 346:773 (1990).

    Article  PubMed  CAS  Google Scholar 

  15. E.J. Shakhnovich, G. Farztdinov, A.M. Gutin, and M. Karplus, Protein Folding Bottlenecks: A Lattice Monte Carlo Simulation, Phys. Rev. Lett. 67:1665 (1991).

    Article  PubMed  CAS  Google Scholar 

  16. H.S. Chan and K.A. Dill, Origins of Structure in Globular Proteins, Proc. Natl. Acad. Sci. (USA) 87:6388 (1990).

    Article  CAS  Google Scholar 

  17. H.S. Chan and K.A. Dill, Compact Polymers Macromolecules 22:4559 (1989).

    Article  CAS  Google Scholar 

  18. K.M. Fiebig and K.A. Dill, Protein Cone Assembly Processes, J, Chem. Phys. 98:3475 (1993).

    Article  CAS  Google Scholar 

  19. J. Skolnick and A. Kolinski, Simulations of the Folding of a Globular Protein, Science 250:1121 (1990).

    Article  PubMed  CAS  Google Scholar 

  20. J. Skolnick, A. Kolinski, and R. Yaris, Monte Carlo Simulations of the Folding of Beta Barrel Globular Proteins, Proc. Natl. Acad. Sci. (USA) 86:5057 (1988).

    Article  Google Scholar 

  21. D.G. Garrett, K. Kastella, and D.M. Ferguson, New Results on Protein Folding From Simulated Annealing, J. Am. Chem. Soc. 114:6555 (1992).

    Article  CAS  Google Scholar 

  22. P. Leopold, M. Montai, and J.N. Onuchic, Protein Folding Funnels: A Kinetic Approach to the Sequence-Structure Relationship, Proc. Natl. Acad. Sci. (USA) 89:8721 (1991).

    Article  Google Scholar 

  23. G. Iori, E. Marinari, and G. Parisi, Random Self-Interacting Chains: A Mechanism for Protein Folding, J. Phys. A24:5439 (1991).

    Google Scholar 

  24. D.G. Covell and R.L. Jernigan, Conformations of Folded Proteins in Restricted Spans, Biochemistry 29:3287 (1990).

    Article  PubMed  CAS  Google Scholar 

  25. J.D. Honeycutt and D. Thirumalai, The Nature of Folded States of Globular Proteins, Biopolymers 32:695 (1992).

    Article  PubMed  CAS  Google Scholar 

  26. K. A. Dill, Dominant Forces in Protein Folding, Biochemistry 29:7133 (1990).

    Article  PubMed  CAS  Google Scholar 

  27. M. Levitt and R. Sharon, Accurate Simulation of Protein Dynamics in Solution, Proc. Natl. Acad. Sci. USA, 85:8557 (1988).

    Article  Google Scholar 

  28. H. Taketomi, Y. Ueda, and N. Go, Studies on Protein Folding, Unfolding and Fluctuations by Computer Simulation, Int. J. Peptide Protein Res. 7:445 (1975).

    Article  CAS  Google Scholar 

  29. M. Levitt and A. Warshel, Computer Simulation of Protein Folding, Nature 253:694 (1975).

    Article  PubMed  CAS  Google Scholar 

  30. C.J. Camacho and D. Thirumalai, Kinetics and Thermodynamics of Folding in Model Proteins, Proc. Natl. Acad. Sci. (USA) 90:6369 (1993).

    Article  CAS  Google Scholar 

  31. Z. Guo and D. Thirumalai, Kinetics of Helix Formation, Preprint.

    Google Scholar 

  32. A. Rey and J. Skolnick, Comparison of Lattice Monte Carlo Dynamics Brownian Dynamics Folding Pathways of Alpha-Helical Hairpins, Chem. Phys. 158:199 (1991).

    Article  CAS  Google Scholar 

  33. H.C. Andersen, Rattle: A “Velocity” Version of the Shake Algorithm for Molecular Dynamics Calculations, J. Comp. Phys. 52:24 (1983).

    Article  CAS  Google Scholar 

  34. S. Kirkpatrick, C. D. Gelatt, and M. P. Vecchi, Optimization by Simulated Annealing, Science 220:671 (1983).

    Article  PubMed  CAS  Google Scholar 

  35. Z. Guo, D. Thirumalai, and J.D. Honeycutt, Folding Kinetics of Proteins: A Model Study, J. Chem. Phys. 97:525 (1992).

    Article  CAS  Google Scholar 

  36. Z. Guo and D. Thirumalai, Kinetics of Protein Folding: Time Scales and Pathways, Preprint.

    Google Scholar 

  37. H.S. Chan and K.A. Dill, Energy Landscapes and Collapse Dynamics of Homopolymers, J. Chem. Phys. 99:2116 (1993).

    Article  CAS  Google Scholar 

  38. Y. Ueda, H. Taketomi, and N. Go, Studies on Protein Folding, Unfolding, and Fluctuations by Computer Simulation II. A Three Dimensional Lattice Model of Lysozyme, Biopolymers 17:1531 (1978).

    Article  CAS  Google Scholar 

  39. C.M. Jones, E.R. Henry, Y. Hu, C.-K. Chan, S.D. Luck, A. Bhuyan, H. Roder, J. Hofrichter, and W.A. Eaton, Fast Events in Protein Folding Initiated by Nanosecond Laser Photolysis, Preprint.

    Google Scholar 

  40. P.G. de Gennes, Kinetics of Collapse for a Flexible Coil, J. Physique Lett. 46:L639 (1985).

    Article  Google Scholar 

  41. J.P. Hendrick and F.-U. Harti, Molecular Chaperone Functions of Heat Shock Proteins, Ann. Rev. Biochem. 62:349 (1993).

    Article  PubMed  CAS  Google Scholar 

  42. E.A. Craig, Chaperones: Helpers Along Pathways to Protein Folding, Science 260:1902 (1993).

    Article  PubMed  CAS  Google Scholar 

  43. D.A. Agard, To Fold or Not to Fold. Science 260:1903 (1993).

    Article  PubMed  CAS  Google Scholar 

  44. J.N. Israelachvili in “Intermolecular and Surface Forces”, (Academic Press, London, 1991).

    Google Scholar 

  45. R.P. Beckman, L.A. Mizzan, and W.J. Welch, Interaction of Hsp70 with Newly Synthesized Proteins: Implications for Protein Folding and Assembly Science 248:850 (1990).

    Article  Google Scholar 

  46. M.Y. Cheng, F.-U. Hartl, J. Martin, R.A. Pollock, F. Kalousek, W. Neupert, E.M. Hallberg, R.L. Hallberg, and A.L. Horwich, Mitochondrial Heat-Shock Protein Hsp60 is Essential for Assembly of Proteins Imported into Yeast Mitochondria Nature 337:620 (1989).

    Article  PubMed  CAS  Google Scholar 

  47. T. Langer, C. Lu, H. Echols, J. Flanagan, M.K. Hayer, and F.-U. Hartl, Successive Action of Dnak, Dnaj and GroEl along the Pathway of Chaperone-Mediated Protein Folding Nature 356:683 (1992).

    Article  PubMed  CAS  Google Scholar 

  48. P.V. Viitanen, A.A. Gatenby, and G.H. Lorimer, Purified Chaperonin 60 (GroEl) Interacts with the Non-Native States of a Multitude of Escherichia coli Proteins, Protein Sci. 1:363 (1992).

    Article  PubMed  CAS  Google Scholar 

  49. P.G. de Gennes in “Scaling Concepts in Polymer Physics”:, (Cornell University Press, Ithaca, New York, 1985).

    Google Scholar 

  50. D.H. Napper in “Polymeric Stabilization of Colloidal Dispersions”, (Academic Press, New York, 1983).

    Google Scholar 

  51. D. Thirumalai, Interaction Between Chaperone Bound Protein Complexes, Preprint.

    Google Scholar 

  52. G.H. Lorimer, M.J. Todd, and P. Viitanen, Chaperonins and Protein Folding: Unity and Disunity of Mechanisms, Phil. Trans. R. Soc. Lond. B 339:297 (1993).

    Article  CAS  Google Scholar 

  53. D. Sarid in “Scanning Force Microscopy with Applications to Electric, Magnetic, and Atomic Forces”, (Oxford University Press, Cambridge, 1993).

    Google Scholar 

  54. R.E. Elber and M. Karplus, Multiple Conformational States of Proteins: A Molecular Dynamics Analysis of Proteins, Science 235:318 (1987).

    Article  PubMed  CAS  Google Scholar 

  55. H. Frauenfelder, S. Sligar, and P.G. Wolynes, The Energy Landscapes and Motions of Proteins, Science 254:1598 (1991).

    Article  PubMed  CAS  Google Scholar 

  56. J.E. Straub and D. Thirumalai, Exploring the Energy Landscape in Proteins, Proc. Natl. Acad. Sci. (USA) 90:809 (1993).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1994 Springer Science+Business Media New York

About this chapter

Cite this chapter

Thirumalai, D. (1994). Theoretical Perspectives on In Vitro and In Vivo Protein Folding. In: Doniach, S. (eds) Statistical Mechanics, Protein Structure, and Protein Substrate Interactions. NATO ASI Series, vol 325. Springer, Boston, MA. https://doi.org/10.1007/978-1-4899-1349-4_12

Download citation

  • DOI: https://doi.org/10.1007/978-1-4899-1349-4_12

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4899-1351-7

  • Online ISBN: 978-1-4899-1349-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics