Skip to main content

Microwave Discharges : Structures and Stability

  • Chapter

Part of the book series: NATO ASI Series ((NSSB,volume 302))

Abstract

As it has been shown in a recent paper1, plasma aided manufacturing is growing. This is particularly true for microwave discharges owing their specific advantages. Indeed, these electrodeless discharges are non polluting and permit the use of corrosive gases, further they are easy to operate and versatile. For applications, a very important characteristic of these discharges is their very high production rate of species. Indeed, microwave plasma can be regarded as source of species. In the plasma bulk itself are produced ions and photons whose the field of applictions is very wide: microelectronics (etching, cleaning, stripping...) for ions, UV or visible sources for photons (UV excimer lasers, intense mercury lamps...). Microwave plasma are also producing active neutrals which can be carried out of the plasma in flowing discharges making possible processes of surface treatment as nitriding, oxydation, coating...

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. J. Shohet, Plasma aided manufacturing, IEEE Trans. on Plasma Science, 19: 725 (1991).

    Article  CAS  Google Scholar 

  2. J. Marec, E. Bloyet, M. Chaker, P. Leprince and P. Nghiem, Microwave discharges, in: “Electrical Breakdown and Discharges in Gases,”E.E. Kunhardt and L.H. Luessen, ed., Plenum Press, New York 89B:347 (1982).

    Google Scholar 

  3. M. Moisan and Z. Zakvzewski, Plasma sources based on the propagation of electromagnetic surface waves,). Phys. D 24: 1025 (1991).

    Article  Google Scholar 

  4. P. Leprince and J. Marec, Microwave Excitation Technology, ICPIGXX (1991); to be published in:“Plasma Technology:Fundamentals and Applications,’M. Capitelli, ed., Plenum Press, New York.

    Google Scholar 

  5. A.B. Sa, C.M. Ferreira, S. Pasquiers, C. Boisse-Laporte, P. Leprince and J. Marec, Self-consistent modeling of surface wave produced discharges at low pressures). Appl. Phys. 70: 4158 (1991).

    Google Scholar 

  6. G.S. Solntsev, P.S. Bulkin and M.M. Rakhman, Role of thermal effects in the plasma of a low-pressure microwave surfatron,Sov. J. Plasma Phys. 15: 495 (1989).

    Google Scholar 

  7. S. Daviaud, C. Boisse-Laporte, P. Leprince and J. Marec, Description of a surface-wave produced microwave discharge in helium at low pressure in the presence of a gas flow). Phys. D, 22: 770 (1989).

    CAS  Google Scholar 

  8. J. Margot-Chaker, M. Moisan, M. Chaker, W.M.M. Glaude, P. Lauque, J. Paraszczak and G. Sauve, Tube diameter and wave frequency limitations when using the electromagnetic surface wave in the m=1 (dipolar) mode to sustain a plasma column). Appl. Phys. 66: 4134 (1989).

    Article  Google Scholar 

  9. P. Leprince and J. Pommier, Surface wave in a plasma column:dipolar wave, Proc. IEE, 113: 588 (1966).

    Google Scholar 

  10. E. Benova, I. Ghanashev and I. Zhelyazkow, Theoretical study of a plasma column sustained by an electromagnetic surface wave in the dipolar modeJ. Plasma Phys., 45: 137 (1991).

    Article  Google Scholar 

  11. Z. Zakrzewski, Conditions of existence and axial structure of long microwave discharges sustained by travelling waves,. Phys. D, 16: 171 (1983).

    CAS  Google Scholar 

  12. D.R. Tuma, A quiet uniform microwave gas discharge for lasers, Rev. Sci. Instrum., 41: 1519 (1970).

    Article  CAS  Google Scholar 

  13. B. Kampmann, Temporal development and properties of overdense plasma produced by high power microwaves in a coaxial discharge device,Z. Naturforsch, 34A: 414 (1979).

    Google Scholar 

  14. H. Rau and B.Trafford, A microwave plasma ball reactor:experiment and simulation,J.Phys.D: Appl.Phys. 23: 1637 (1990).

    Google Scholar 

  15. M.A. Liberman, A.J. Lichtenberg and D.L. Flamm, Memorandum UCB/ERL N 90/10, The helical resonator plasma source,University of California, Berkeley.

    Google Scholar 

  16. G.A. Askar’yan, G.M. Batanov, S.I. Gritsinin, I.A. Kossyi and A. Yu. Kostinski, Plasma chemical processes accompanying discharges in air excited by a microwave beam,Sov. Phys. Tech. Phys. 35: 1275 (1990).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1993 Springer Science+Business Media New York

About this chapter

Cite this chapter

Marec, J., Leprince, P. (1993). Microwave Discharges : Structures and Stability. In: Ferreira, C.M., Moisan, M. (eds) Microwave Discharges. NATO ASI Series, vol 302. Springer, Boston, MA. https://doi.org/10.1007/978-1-4899-1130-8_3

Download citation

  • DOI: https://doi.org/10.1007/978-1-4899-1130-8_3

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4899-1132-2

  • Online ISBN: 978-1-4899-1130-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics