Skip to main content

Columnar Organization in the Inferotemporal Cortex

  • Chapter
Extrastriate Cortex in Primates

Part of the book series: Cerebral Cortex ((CECO,volume 12))

Abstract

A key function of the primate brain is recognition of objects from their visual images. The recognition process is flexible, tolerating marked changes in images due to changes in illumination, viewing angle, and pose of the object. Moreover, the primate visual system processes images of novel objects based on previous visual experience of similar objects. Generalization may be an intrinsic property of the primate visual system. In this review the neural organization essential for these flexible aspects of visual object recognition in TE of the inferotemporal cortex is discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  • Baylis, G. C., Rolls, E. T., and Leonard, C. M., 1985, Selectivity between faces in the responses of a population of neurons in the cortex in the superior temporal sulcus of the monkey, Brain Res. 342: 91–102.

    Article  PubMed  CAS  Google Scholar 

  • Baylis, G. C., Rolls, E. T., and Leonard, C. M., 1987, Functional subdivisions of the temporal lobe neocortex, J. Neurosci. 7: 330–342.

    PubMed  CAS  Google Scholar 

  • Boussaoud, D., Desimone, R., and Ungerleider, L. G., 1991, Visual topography of area TEO in the macaque, J. Comp. Neural. 306: 554–575.

    Article  CAS  Google Scholar 

  • Bruce, C., Desimone, R., and Gross, C. G., 1981, Visual properties of neurons in a polysensory area in superior temporal sulcus of the macaque, J. Neurophysiol. 46: 369–384.

    PubMed  CAS  Google Scholar 

  • Chelazzi, L., Miller, E. K., Duncan, J., and Desimone, R., 1993, A neural basis for visual search in inferior temporal cortex, Nature 363: 345–347.

    Article  PubMed  CAS  Google Scholar 

  • Cheng, K., Saleem, K. S., and ‘l’anaka, K., 1993, PHA-L study of the subcortical projections of the macaque inferotemporal cortex, Soc. Neurosci. Abstr. 19: 971.

    Google Scholar 

  • Crick, F., 1984, Function of the thalamic reticular complex: The searchlight hypothesis, Proc. Natl. Acad. Sci. USA 81: 4586–4590.

    Article  PubMed  CAS  Google Scholar 

  • Dean, P., 1976, Effects of inferotemporal lesions on the behavior of monkeys, Psychol. Bull. 83: 4171.

    Article  Google Scholar 

  • Desimone, R., Fleming, J., and Gross, C. D., 1980, Prestriate afferents to inferior temporal cortex: An HRP study, Brain Res. 184: 41–55.

    Article  PubMed  CAS  Google Scholar 

  • Edelman, S., 1995, Representation, similarity and the chorus of prototypes, Minds Machines 5: 45–68.

    Article  Google Scholar 

  • Engel, A. K., Konig, P., Kreiter, A. K., Schillen, T. B., and Singer, W., 1992, Temporal coding in the visual cortex: New vistas on integration in the nervous system, Trends Neurosci. 15: 218–226.

    Article  PubMed  CAS  Google Scholar 

  • Erickson, R. P., 1968, Stimulus coding in topographic and nontopographic afferent modalities: On the significance of the activity of individual neurons, Psychol. Rev. 75: 447–465.

    Article  PubMed  CAS  Google Scholar 

  • Foldiak, P., 1991, Learning invariance from transformation sequences, Neural Comput. 3: 194–200.

    Article  Google Scholar 

  • Frostig, R. D., Lieke, D. E., Ts’o, D. Y., and Grinvald, A., 1990, Cortical functional architecture and local coupling between neuronal activity and the microstimulation revealed in in vivo high-resolution optical imaging of intrinsic signals, Proc. Natl. Acad. Sci. USA 87: 6082–6086.

    Article  PubMed  CAS  Google Scholar 

  • Fujita, I., Tanaka, K., Ito, M., and Cheng, K., 1992, Columns for visual features of objects in monkey inferotemporal cortex, Nature 360: 343–346.

    Article  PubMed  CAS  Google Scholar 

  • Goodale, M. A., and Milner, A. D., 1992, Separate visual pathways for perception and action, Trends Neurosci. 15: 20–25.

    Article  PubMed  CAS  Google Scholar 

  • Goodale, M. A., Milner, A. D., Jakobson, L. S., and Carey, D. P., 1991, A neurological dissociation between perceiving objects and grasping them, Nature 349: 154–156.

    Article  PubMed  CAS  Google Scholar 

  • Gross, C. G., 1973, Visual functions of inferotemporal cortex, in: Handbook of Sensory Physiology, Vol. 7, Part 3B ( R. Jung, ed.), Springer-Verlag, Berlin, pp. 451–482.

    Google Scholar 

  • Gross, C. G., Rocha-Miranda, C. E., and Bender, D. B., 1972, Visual properties of neurons in inferotemporal cortex of the macaque, J. Neurophysiol. 35: 96–111.

    PubMed  CAS  Google Scholar 

  • Ito, M., Fujita, I., Tamura, H., and Tanaka, K., 1994, Processing of contrast polarity of visual images in inferotemporal cortex of the macaque monkey, Cerebral Cortex 5: 499–508.

    Google Scholar 

  • Ito, M., ‘l’amura, H., Fujita, I., and Tanaka, K., 1995, Size and position invariance of neuronal responses in monkey inferotemporal cortex, J. Neurophysiol. 73: 218–226.

    CAS  Google Scholar 

  • Iwai, E., and Yukie, M., 1987, Amygdalofugal and amygdalopetal connections with modality-specific visual cortical areas in macaques (Macaca fuscata, M. mulatta, and M. fascicular is), J. Comp. Neurol. 261: 362–387.

    Article  PubMed  CAS  Google Scholar 

  • Iwai, E., Yukie, M., Suyama, H., and Shirakawa, S., 1987, Amygdalar connections with middle and inferior temporal gyri of the monkey, Neurosci. Lett. 83: 25–29.

    Article  PubMed  CAS  Google Scholar 

  • Kawato, M., Inui, T., Hongo, S., and Hayakawa, H., 1991, Computational theory and neural network models of interaction between visual cortical areas, AIR Technical Report, TR-A-0105 ( Kyoto, ATR).

    Google Scholar 

  • Kawato, M., Hayakawa, H., and Inui, T., 1993, A forward-inverse optics model of reciprocal connections between visual cortical areas, Network 4: 415–422.

    Article  Google Scholar 

  • Kobatake, E., and Tanaka, K., 1994, Neuronal selectivities to complex object features in the ventral visual pathway of the macaque cerebral cortex, J. Neurophysiol. 71: 856–867.

    PubMed  CAS  Google Scholar 

  • Kobatake, E., Tanaka, K., and Tamori, Y., 1992, Long-term learning changes the stimulus selectivity of cells in the inferotemporal cortex of adult monkeys, Neurosci. Res. 917: S237.

    Google Scholar 

  • Kobatake, E., Tanaka, K., Wang, G., and Tamori, Y., 1993, Effects of adult learning on the stimulus selectivity of cells in the inferotemporal cortex, Soc. Neurosci. Abstr. 19: 975.

    Google Scholar 

  • Kusunoki, M., Tanaka, Y., Ohtsuka, H., Ishiyama, K., and Sakata, H., 1993, Selectivity of the parietal

    Google Scholar 

  • visual neurons in the axis orientation of objects in space Soc. Neurosci. Abstr. 19:770.

    Google Scholar 

  • Lehky, S. R., Sejnowski, T. J., and Desimone, R., 1992, Predicting responses of nonlinear neurons in

    Google Scholar 

  • monkey striate cortex to complex patterns J. Neurosci. 12:3568–3581.

    Google Scholar 

  • Leonard, C. M., Rolls, E. T., Wilson, F. A. W., and Baylis, G. C., 1985, Neurons in the amygdala of the monkey with responses selective for faces, Behay. Brain Res. 15: 159–176.

    Article  CAS  Google Scholar 

  • Li, L., Miller, E. K., and Desimone, R., 1993, The representation of stimulus familiarity in anterior inferior temporal cortex, J. Neurophysiol. 69: 1918–1929.

    PubMed  CAS  Google Scholar 

  • Malach, R., 1994, Cortical columns as devices for maximizing neuronal diversity, Trends Neurosci. 17: 101–104.

    Article  PubMed  CAS  Google Scholar 

  • Martin-Elkins, C. L., and Horel, J. A., 1992, Cortical afferents to behaviorally defined regions of the inferior temporal and parahippocampal gyri as demonstrated by WGA-HRP, J. Comp. Neurol. 321: 177–192.

    Article  PubMed  CAS  Google Scholar 

  • Miller, E. K., Li, L., and Desimone, R., 1991, A neural mechanism for working and recognition memory in inferior temporal cortex, Science 254: 1377–1379.

    Article  PubMed  CAS  Google Scholar 

  • Mishkin, M., Ungerleider, L. G., and Macko, K. A., 1983, Object vision and spatial vision: Two cortical pathways, Trends Neurosci. 6: 414–417.

    Article  Google Scholar 

  • Moran, J., and Desimone, R., 1985, Selective attention gates visual processing in the extrastriate cortex, Science 229: 782–784.

    Article  PubMed  CAS  Google Scholar 

  • Mountcastle, V. B., 1978, An organizing principle for cerebral function: The unit module and the distributed system, in: The Mindful Brain ( V. B. Mountcastle and G. M. Edelman, eds.), MIT Press, Cambridge, MA, pp. 7–50.

    Google Scholar 

  • Nakamura, H., Gattass, R., Desimone, R., and Ungerleider, L. G., 1993, ‘The modular organization of projections from areas V1 and V2 to areas V4 and TEO in macaques, J. Neurosci. 13: 3681–3691.

    Google Scholar 

  • Nakamura, K., Matsumoto, K., Mikami, A., and Kubota, K., 1994, Visual response properties of single neurons in the temporal pole of behaving monkeys, J. Neurophysiol. 71: 1206–1221.

    PubMed  CAS  Google Scholar 

  • Nakamura, K., Mikami, A., and Kubota, K., 1992, Activity of single neurons in the monkey amyg dala during performance of a visual discrimination task, J. Neurophysiol. 67: 1447–1463.

    PubMed  CAS  Google Scholar 

  • Oram, M. W., and Perrett, D. I., 1994, Responses of anterior superior temporal polysensory (STPa) neurons to “biological motion” stimuli, J. Cognitive Neurosci. 6: 99–116.

    Article  Google Scholar 

  • Perrett, D. I., Rolls, E. T., and Caan, W., 1982, Visual neurones responsive to faces in the monkey temporal cortex, Exp. Brain Res. 47: 329–342.

    Article  PubMed  CAS  Google Scholar 

  • Perrett, D. I., Smith, P. A. J., Mistlin, A. J., Chitty, A. J., Head, A. S., Potter, D. D., Broennimann, R., Milner, A. D., and Jeeves, M. A., 1985, Visual analysis of body movements by neurons in the temporal cortex of the macaque monkey: A preliminary report, Behay. Brain Res. 16: 153170.

    Google Scholar 

  • Perrett, D. I., Harries, M. H., Bevan, R., Thomas, S., Benson, P. J., Mistlin, A. J., Chitty, J. K., Hietanen, J. K., and Ortega, J. E., 1989, Frameworks of analysis for the neural representation of animate objects and actions, J. Exp. Biol. 146: 87–113.

    PubMed  CAS  Google Scholar 

  • Perrett, D. I., Hietanen, J. K., Oram, M. W., and Benson, P. J., 1992, Organization and functions of cells responsive to faces in the temporal cortex, Phil. Trans. R. Soc. Lund. B 335: 23–30.

    Article  CAS  Google Scholar 

  • Peters, A., and Yilmaz, E., 1993, Neuronal organization in area 17 of cat visual cortex, Cerebral Cortex 3: 49–68.

    Article  PubMed  CAS  Google Scholar 

  • Purves, D., Riddle, D. R., and LaMantia, A.-S., 1992, Iterated patterns of brain circuitry (or how the cortex gets its spots), Trends Neurosci. 15: 362–368.

    Article  PubMed  CAS  Google Scholar 

  • Richmond, B. J., and Sato, T., 1987, Enhancement of inferior temporal neurons during visual discrimination, J. Neurophysiol. 58: 1292–1306.

    PubMed  CAS  Google Scholar 

  • Rockland, K. S., and Van Hoesen, G. W., 1994, Direct temporal-occipital feedback connections to striate cortex (V1) in the macaque monkey, Cerebral Cortex 4: 300–313.

    Article  PubMed  CAS  Google Scholar 

  • Rockland, K. S., Saleem, K. S., and Tanaka, K., 1994, Divergent feedback connections from areas V4 and TE() in the macaque, Visual Neurosci. 11: 579–600.

    Article  CAS  Google Scholar 

  • Rolls, E. T., and Tovee, M. J., 1995, Sparseness of the neuronal representation of stimuli in the primate temporal visual cortex, J. Neurophysiol. 73: 713–726.

    Google Scholar 

  • Rolls, E. T, Baylis, G. C., and Leonard, C. M., 1985, Role of low and high spatial frequencies in the face-selective responses of neurons in the cortex in the superior temporal sulcus in the monkey, Vision Res. 25: 1021–1035.

    Article  PubMed  CAS  Google Scholar 

  • Rolls, E. T., Baylis, G. C., Hasselmo, M. E., and Nalwa, V., 1989, The effect of learning on the face-selective responses of neurons in the cortex in the superior temporal sulcus of the monkey, Exp. Brain Res. 76: 153–164.

    Article  PubMed  CAS  Google Scholar 

  • Sakata, H., and Kusunoki, M., 1992, Organization of space perception: Neural representation of three-dimensional space in the posterior parietal cortex. Curr. Opin. Neurobiol. 2: 170–174.

    Article  PubMed  CAS  Google Scholar 

  • Saleem, K. S., Tanaka, K., and Rockland, K. S., 1992, PHA-L study of connections from TEO and V4 to TE in the monkey visual cortex, Soc. Neurosci. Abstr. 18: 294.

    Google Scholar 

  • Saleem, K. S., Tanaka, K., and Rockland, K. S., 1993, Specific and columnar projection from area TEO to TE in the macaque inferotemporal cortex, Cerebral Cortex 3: 454–464.

    Article  PubMed  CAS  Google Scholar 

  • Saleem, K. S., Cheng, K., and Tanaka, K., 1994, Differential projection from ventral and dorsal parts of the anterior TE to perirhinal cortex in the macaque monkey, Neurosci. Res. 19: S201.

    Article  Google Scholar 

  • Saleem, K. S., Cheng, K., and Tanaka, K., 1995, Differential cortical projection of dorsal and ventral sub-regions of the area TE in the macaque inferotemporal cortex, IBRO Abstr. 4: 284.

    Google Scholar 

  • Sary, G., Vogels, R., and Orban, G. A., 1993, Cue-invariant shape selectivity of macaque inferior temporal neurons, Science 260: 995–997.

    Article  PubMed  CAS  Google Scholar 

  • Seltzer, B., and Pandya, D. N., 1978, Afferent cortical connections and architectonics of the superior temporal sulcus and surrounding cortex in the rhesus monkey, Brain Res. 149: 1–24.

    Article  PubMed  CAS  Google Scholar 

  • Seltzer, B., and Pandya, D. N., 1984, Further observations on parieto-temporal connections in the rhesus monkey, Exp. Brain Res. 55: 301–312.

    Article  PubMed  CAS  Google Scholar 

  • Seltzer, B., and Pandya, D. N., 1989, Intrinsic connections and architectonics of the superior temporal sulcus in the rhesus monkey, J. Comp. Neurol. 290: 451–471.

    Article  PubMed  CAS  Google Scholar 

  • Seltzer, B., and Pandya, D. N., 1994, Parietal, temporal, and occipital projections to cortex of the superior temporal sulcus in the rhesus monkey: A retrograde tracer study, J. Comp. Neural. 343: 445–463.

    Article  CAS  Google Scholar 

  • Singer, W., 1993, Synchronization of cortical activity and its putative role in information processing and learning, Annu. Rev. Physiol. 55: 349–374.

    Article  PubMed  CAS  Google Scholar 

  • Snippe, H. P., and Koenderink, J. J., 1992, Discrimination thresholds for channel-coded systems, Biol. Cybernet. 66: 543–551.

    Article  Google Scholar 

  • Spitzer, H., Desimone, R., and Moran, J. 1988, Increased attention enhances both behavioral and neuronal performance, Science 240: 338–340.

    Google Scholar 

  • Suzuki, W. A., and Amaral, D. G., 1995, Perirhinal and parahippocampal cortices of the macaque monkey: Cortical afferents, J. Comp. Neural. 349: 1–36.

    Google Scholar 

  • Taira, M., Mine, S., Georgopoulos, A. P., Murata, A., and Sakata, H., 1990, Parietal cortex neurons of the monkey related to the visual guidance of hand movement, Exp. Brain Res. 83: 29–36.

    Article  PubMed  CAS  Google Scholar 

  • Tanaka, K., Saito, H., Fukada, Y., and Moriya, M., 1991, Coding visual images of objects in the inferotemporal cortex of the macaque monkey, J. Neurophysiol. 66: 170–189.

    PubMed  CAS  Google Scholar 

  • Tanaka, Y., Kusunoki, M., Ohtsuka, H., Takiura, K., and Sakata, H., 1992, Analysis of three dimensional directional selectivity of the monkey parietal depth-movement-sensitive neurons using a stereoscopic computer display system, Neurosci. Res. S17: S238.

    Google Scholar 

  • Tanaka, Y., Murata, A., Taira, M., Shikata, E., and Sakata, H., 1994, Responses of the parietal visual neurons to stereoscopic stimuli on the computer graphic display in alert monkeys, Neurosci. Res. S19:S200.Thomson, A. M., and Deuchars, J., 1994, Temporal and spatial properties of local circuits in neo-cortex, Trends Neurosci. 17: 119–126.

    Article  Google Scholar 

  • Tovee, M. J., and Rolls, E. T., 1992, Oscillatory activity is not evident in the primate temporal visual cortex with static stimuli, NeuroReport 3: 369–372.

    Article  PubMed  CAS  Google Scholar 

  • Ungerleider, L. G., Gaffan, D., and Pelak, V. S., 1989, Projections from inferior temporal cortex to prefrontal cortex via the uncinate fascicle in rhesus monkeys, Exp. Brain Res. 76: 473–484.

    Article  PubMed  CAS  Google Scholar 

  • Van Hoesen, G. W., 1982, The parahippocampal gyrus: New observations regarding its cortical connections in the monkey, Trends Neurosci. 5: 345–350.

    Article  Google Scholar 

  • Wang, G., ‘Tanaka, K., and Tanifuji, M., 1996, Optical imaging of functional organization in the monkey inferotemporal cortex, Science 272: 1665–1668.

    CAS  Google Scholar 

  • Young, M. P., and Yamane, S., 1992, Sparse population coding of faces in the inferotemporal cortex, Science 29: 1327–1331.

    Article  Google Scholar 

  • Young, M. P., Tanaka, K., and Yamane, S., 1992, On oscillating neuronal responses in the visual cortex of the monkey, J. Neurophysiol. 67: 1464–1474.

    PubMed  CAS  Google Scholar 

  • Yukie, M., Hikosaka, K., and Iwai, E., 1992, Organization of cortical visual projections to the dot-sal and ventral parts of area TE of the inferotemporal cortex in macaques, Soc. Neurosci. Abstr. 18: 294

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1997 Springer Science+Business Media New York

About this chapter

Cite this chapter

Tanaka, K. (1997). Columnar Organization in the Inferotemporal Cortex. In: Rockland, K.S., Kaas, J.H., Peters, A. (eds) Extrastriate Cortex in Primates. Cerebral Cortex, vol 12. Springer, Boston, MA. https://doi.org/10.1007/978-1-4757-9625-4_11

Download citation

  • DOI: https://doi.org/10.1007/978-1-4757-9625-4_11

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4757-9627-8

  • Online ISBN: 978-1-4757-9625-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics